《数学广角》说课稿

时间:2025-09-06 说课稿 我要投稿

《数学广角》说课稿

  作为一名老师,就不得不需要编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。那么问题来了,说课稿应该怎么写?下面是小编收集整理的《数学广角》说课稿,仅供参考,希望能够帮助到大家。

《数学广角》说课稿

《数学广角》说课稿1

  一、教材分析:

  我说课的内容是:小学数学义务教育课程标准实验教材(人教版)第六册、第九单元、数学广角中的第一课时。《数学广角》是我们新教材中新增设的一个内容,它主要是介绍和渗透一些数学思想方法,涉及的重叠问题是日常生活中应用比较广泛的数学知识。在本节课前,学生虽然已经学习过分类的思想方法,但集合这部分内容比较抽象,针对三年级学生的认知水平,在这里只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了,综上分析,本课的教学目标定位为:

  二、教学目标:

  知识目标:引导学生从生活经验中感受到交集的含义。能借助直观图,体验利用韦恩图解决简单的实际问题。

  能力目标:通过小组整理图表的活动,启发学生对交集部分的理解,培养学生操作能力、思考能力、创新能力、评价说理能力。

  情感目标:通过生活情景的课堂再现,让学生在探究、应用知识中体验数学的价值。

  三、教学重、难点:

  教学重点:初步学会利用交集的含义解决简单的实际问题。

  教学难点:用图示的方式感受到交集部分。

  为了有效的达到教学目标我在教学中,设计了以下教学策略

  四、教学策略:

  1.关注数学知识产生和发展的过程

  对于三年级学生来说,集合问题具有高度的抽象性,因此必须通过学生的生活世界.让抽象的问题生活化,教学中通过摆、画、移动、整理等过程得出韦恩图,发现图形表示的优越性,又让学生经历现场的调查并以图形表示出来,最后运用语言、图表来表现,是对集合知识高度理解与综合应用的体现。整个认知过程是问题不断解决,认识不断清晰,知识不断建构的过程。

  2、突出数学学习方式的综合运用

  五、教学过程:

  1、创设情境、调查感知。

  在课前通过合理有效的谈话,调动学生的积极性,为教学营造了轻松和谐的氛围。首先调查学生喜欢游泳和足球两项运动的情况,又引导学生用“喜欢”、“只喜欢”和“既喜欢……又喜欢”来介绍自己,提醒学生用准确的语言来表达,为本课的难点突破埋下伏笔.使学生初步感受重复,因为语言是思维的外壳。当学生的兴趣被调动之后,水到渠成的引出课题。

  2、设问质疑。引发冲突

  一切学习源于对知识的渴求,只有激发学生的探索欲望,才能达到教育的最理想效果。上课伊始出现森林运动会小动物参加篮球赛、足球赛的情况表,通过引导学生观察,设问质疑,让学生发现表格之混乱,使学生的思维世界中出现碰撞,便产生了求知的火花,从而主动探索解决问题的办法,领悟问题存在的根源——重复。

  3、小组合作,整理表格

  当学生产生认知冲突后,及时的提出修改表格的三点要求:怎样排才能一眼看出有几种动物?让学生分组合作进行整理,在合作的过程中相机进行指导。当学生整理出简洁明了的表格后,再巧妙地引出韦恩图,接着利用课件演示每一部分的意义,让学生用语言表述图意使本节课的难点悄然解决。

  接着根据学生观察韦恩图得出的信息,引导学生从图的形式转化成算式的形式,从而解决了“初步学会利用交集的含义解决简单的实际问题。”这一重点。

  然后组织学生一步步创造出韦恩图即集合图,再比较图与表,突出韦恩图的价值,从而肯定学生的科学创造过程。整个环节完全是让学生经历自己创造韦恩图的过程,学生在快乐的合作探究中体验到了成功的喜悦。因此学生主动地打开了数学王国的大门。同时,通过一道追加习题,强化新知。进一步感受交集的含义。

  4、实践运用,发展新知

  让不同的学生学习不同的`数学,让不同的学生有不同的发展,这是新课改下很流行的话语。作为一节新授课的尾声部分——实践运用,应该促进学生发展,因此,在练习中我设计了这样几个环节:1、读图训练,强化新知。2、完成教材中设计的习题,加深对集合的认识和计算方法的掌握。3、给学生一个开放的空间,当场调查爸爸吸烟喝酒的情况,让学生自主探索自己设计出集合图,在内化提升的过程中进行健康教育。充分地利用韦恩图,让他们明白韦恩图在平时生活中也是非常有用

  习题的设计在有层次、有梯度、有价值的前提下,既,培养学生操作能力、思考能力、创新能力、评价说理能力。又让学生在探究、应用知识中体验了数学的价值。

  数学课不仅是让学生学数学,更重要的是让学生欣赏数学、体验数学的神奇价值,从欣赏和体验中去感悟数学道理、培养数学素养。本节课学生在四个活动的参与中,真正的作到了自主探索、不断创造,体验到了数学学习的快乐与成功。

《数学广角》说课稿2

  一、说设计理念

  "数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助学生在自主探索和解决问题的过程中真正理解和掌握基本的数学知识和技能,思想和方法。学生是数学学习的主人,教师是数学活动的组织者、引导者和合作者。”这是义务教育数学《课程标准》对数学活动提出的基本理念之一。

  因此,我们要改变传统的教师始终“讲”,学生被动“听”的局面,把学习的主动权交给学生,充分相信学生,调动他们学习的积极性。我在课堂教学中引用了“引导探究学习,促进主动发展”的教学思想,在本堂课中构建了探索性学习的模式。

  今天我上的是四年级上册数学广角例4的内容。

  二、说设计思路

  1、说教材

  数学不仅是人们生活和劳动必不可少的工具,通过学习数学还能提高人的推理能力和抽象能力。本课教材从“田忌赛马”的故事入手引入“对策论”应用问题,对策论研究的是竞争的双方各自采用什么对策才能战胜对手。“田忌赛马”的故事学生可能已经了解,但是不一定是从数学的角度去理解的,在这里,通过故事和活动让学生体会对策论方法在实际中的应用。对于四年级学生来说,学习优选法、对策论等高深的数学知识和方法是比较困难的,要使学生对所学知识有所理解,能饶有兴趣的去学习,除了把握好深浅尺度,改进教学方法外,还应该尽可能地充分挖掘、利用教学资源,使课堂教学的内容充实、丰富、以帮助学生更好地理解这些思想和方法,了解这些数学方法的实际应用。

  2、说教学目标:

  基于以上的分析和学生的实际情况,我设计了以下的教学目标:

  ①学生通过简单的事例,初步体会对策论方法在解决实际问题中的应用。

  ②在活动中让学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识,同时培养学生详细分析,周密思考的思维品质。

  ③感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学重点:经历探索“最佳对策”的过程。

  教学难点:初步理解“最佳对策”的原理。

  3、下面我说说我的各个环节的设计思路

  本节课我自主构建了探索性学习的课堂教学模式,即创设情境、引发兴趣;组织活动、引导探索;多种练习、巩固提高;交流评价、课堂小结。

  ①创设情境,引发兴趣

  俗话说“好的开始是成功的一半”,课的一开始学生的状态就为本节课定下了基调。我利用“与老师一起玩比大小的游戏”导入,从学生已有的生活经验出发,让学生感到亲切易懂。同时,也使学生在轻松的氛围中初步感知对策论的方法在实际中的应用。这样设计符合儿童的年龄特点和心理特征,唤起了学生的学习兴趣,为学生积极参与后面的学习活动打下基础。

  ②组织活动、引导探索

  有些学生学不好数学的原因是因为数学太枯燥太乏味,与生活实际脱节,如果数学教学密切联系学生的生活实际,从学生已有知识和生活经验出发,创设生动的情境,通过数学活动,使学生知道这些知识是生活需要的,是实际应用的,就更能激发学生求知的欲望。僵化的教学使学生变得不善思考、不善质疑,为了让学生真正成为探索、合作交流的主体,紧接着,我用一段动画故事再次激起了学生的兴趣,使学生以积极的心态迎接下一个挑战,并不由自主的进入了探索“最佳对策”的思索中。再接着让学生亲自动手动脑,整理各种方案,验证田忌胜齐王方案的唯一,教学时我注重问题引导,让学生起疑生惑、大但设想、辨析分解、研究问题不重在唯一的结果,使学生对事物的认识从浅入深。在这个过程中,使学生切实体会到对策在这场比赛中的重要性。特别是在讨论田忌所有的`应对方法时,第一次操作学生在无意识的情况下,可能会出现重复或遗漏的现象,在全班交流、汇报以后,让学生带着“怎样排才能既不重复也不漏掉”的问题进行第二次操作,充分体现数学学科所独有的特点数学思想。

  为了充分体现学生学习的主体性,照顾不同层次的学生,这一环节我在课堂上充分利用二人小组,四人小组共同合作、探究的学习方式,让学生互相交流,互相沟通。我本人也作为学习的伙伴投入到讨论之中,把积极思考的主动权完全交给学生,师生之间,生生之间的信息交流与活动交往,促进了知识的互补,使学生发现问题、探索问题、解决问题的能力得到提高

  ③运用练习、巩固提高

  新课程指出“练习是学生获得知识,形成技能,发展智力”的重要手段。由于儿童注意力、兴趣无法维持很长时间。因此,我在练习的设计形式上采用解决生活实际问题等等情景。这样可以在轻松、愉快的氛围中提高了练习的积极性。在内容的设计上也安排了一定的梯度,有利于理解和巩固所学的知识,以形成新的技能和技巧。如通过说一说,田忌这种策略在生活中的应用,让学生了解对策论方法在生活中的应用价值,增强学生探索知识的兴趣和信心,使学生感受数学与生活的紧密联系。如“拍球比赛”通过问:你发现哪个班队员实力较弱?你想对他们说些什么?渗透德育。而取纸片游戏这一环节是则知识的拓展,培养学生多角度思考问题的能力,通过谈感想,谈收获,使学生间互相补充,共同完善,有利于学生学习能力的培养等。

  ④交流评价,课堂小结

  学生通过自主探索性学习,获得的新知识、新经验,无论是认知还是情感都得到全方位的发展,再通过交流评价活动中的感受和体会、意见和看法,使各自明确努力方向。这是本节课同学们最轻松、最兴奋、也是最高兴的时候。这样学生在评价的过程中一方面认识了自己,另一方面,也学会了评价自己的学习。

  最后,我设计了你在本节课有什么收获和感受,把你的收获和感受和同桌说一说。通过交流使学生对所学的知识进行归纳,起到梳理概括,提炼升华的作用,以促进他们形成新的知识结构。

  4、说课后反思

  ①课堂的整体感不够。如几个活动后没有进行及时的小结,将不同的策略连成一条线,让学生更深刻感受到这节课不仅仅要学会“田忌赛马”的策略,更重要的是学会一种数学的思想和方法。

  ②板书设计较随意。特别是引入部分的“扑克牌”比大小的游戏,因为没有将学生与老师“比”的过程很好地展示出来,以致于学生不能及时发现教师赢的“秘诀”。如果能将双方出示的牌一一展示在黑板,相信定能对接下来的教学起到推波助澜的作用。

《数学广角》说课稿3

  数学广角DD简单推理”是人教版《义务教育教科书数学》二年级下册第109页的教学内容。这是一节有趣的活动课,也是一节逻辑思维训练的起始课。逻辑推理能力是人们在生活、学习工作中很重要的能力。

  让学生亲身经历对生活现象判断的过程,从而锻炼学生的逻辑推理能力是教材编写的重要目的之一。《数学课程标准》中明确的提出: “要让学生在参与特定的教学活动,在具体情境中初步认识对象的特征,获得一些体验。加之二年级的孩子喜欢做游戏,喜欢与他人合作,同时也具备了一些简单的推理能力。所以我将整堂课设计成了一节猜一猜、做一做的游戏课,在问题设计的难度上都不是很大,一般都有一个可以直接判断的条件,学生只要找准关系句,就能较为轻松地推理出其他的相关结论。这样设计的目的是让学生通过在生动有趣、形式多样的猜测、推理游戏中感受简单推理的过程,初步获得一些简单推理的`经验二年级下册《数学广角――推理》说课稿二年级下册《数学广角――推理》说课稿。培养学生初步的分析推理能力、合作能力。让学生在自主探究、合作交流中去充分体验数学学习,感受成功的喜悦。

  对于本节课的设计,我试图体现以下几个特点:

  一、在“想猜”中领悟

  平时,只要老师抛出“请同学们猜一猜”这样一句话,学生们就来劲了,会争先恐后地举起小手急着要猜。可见“猜想”是学生们最乐意解决的问题。我设计了让学生猜想环节,共分三个层次,先让学生“瞎”猜(即漫无边际地猜),学生从中意识到这样是猜不到确定的答案的;然后在我的提示下“犹豫”猜,结果有两种答案,还不能确定,学生从中感悟到有了前提条件,答案的范围缩小了;最后在我的再次提示下,学生很快猜出了正确的答案,学生从中领悟到了“猜想”要根据前提条件去推理的。这个猜想环节与本课时内容相关密切,为本课顺利教学做了很好的铺垫,让学生领悟到简单逻辑推理其中条件与结果的密切联系,同时激起了学生的学习兴趣和学习欲望。

  二、在“游戏”中内化

  游戏活动是学生的至爱,学生一做起游戏就不知疲倦,十分投入。这节课中,我设计猜轻重、猜图形以及价钱等一系列活动,让学生参与其中,在活动过程中,学生猜想并叙述从中内化了简单逻辑推理的来拢去脉、前因后果,体验推理的过程,同时进一步培养学生有序、全面思考问题的意识及数学表达的能力。

  三、在“交流”中提升

  这节课中,教学例1时,先让学生认真观察情境图,理清信息,再让学生在独立思考的基础上主动探究解决问题的策略,学会从众多的信息中选择关键的信息推理出某种结论。通过让学生小组内交流想法,培养学生进一步有序的思考问题的意识,提高学生的数学语言表达能力。同时在学生讲清思路之后,我又提出能不能用一种简洁的方式表达我们的思维过程和结论呢?由此引出连线法,使学生明白原来自己的想法可以用连线的方法表示出来,给学有余力的学生一个思考的好方法。

  四、在“设计”中深化

  用推理知识解决了生活中的几个问题后,学生已经有了一定的推理能力。在此基础上让学生创设游戏、表演,是对推理知识的深化,进一步加强学生逻辑思维能力的培养,使思维训练层次提高。

  五、德育渗透与运用新知相结合

  师:“下课离开教室的时候,我最后一个走,听课老师也不能第一个走。那应该谁先离开呢?真棒!跟后面听课的老师也挥挥手说再见吧这一环节既巩固应用了所学新知, 又渗透了文明礼貌的德育教育。

《数学广角》说课稿4

  一、说教材:

  “数学广角――简单推理”是新人教版二年级下册第109页的教学内容。这是一节有趣的活动课,也是一节逻辑思维训练的起始课。本节课主要要求孩子们能根据提供的信息,进行判断、推理,得出结论,使学生初步掌握推理的简单方法。本节课立足学生认知发展水平,在问题设计的难度上都不是很大,一般都有一个可以直接判断的条件,学生只要找准关键句,就能较为轻松地推理出其他的相关结论。让学生亲身经历对生活现象判断的过程,从而锻炼学生的逻辑推理能力是教材编写的重要目的之一。

  二、说学情:

  二年级的孩子由于他们的年龄特点,他们具有较高的学习热情,喜欢做游戏,喜欢与他人合作,同时也具备了一些简单的推理能力。基于以上分析,我将游戏带入了课堂,整堂课设计成一节猜一猜、做一做的游戏课,让学生通过生动有趣、形式多样的猜测、推理游戏,使学生在具体的情境中感受简单推理的过程,初步获得一些简单推理的经验。培养学生初步的分析推理能力、合作能力。

  三、说教学目标及重难点:

  根据教材的编排意图以及学生的实际情况,我制定了本课的教学目标为:

  知识技能:让学生了解简单的推理知识,初步获得一些简单推理的经验;培养学生初步观察、分析、推理能力和有条理思考问题的意识。

  过程方法:让学生经历简单的推理过程,体验逻辑推理的思想与方法,体会逻辑推理条件与结论之间的联系。

  情感态度:感受逻辑推理的趣味性、严谨性以及数学结论的确定性,培养学生积极思维的学习品质。

  重点:经历简单的推理过程,培养学生初步的分析推理能力和观察能力。

  难点:培养学生初步的有序地、全面地思考问题及数学表达的能力。

  四、教法、学法

  《数学课程标准》中明确的.提出:“要让学生在参与特定的教学活动,在具体情境中初步认识对象的特征,获得一些体验。”所以在这节课的设计中,根据教学内容的特点,我采取游戏引入、情境教学与谈话引导等方法让学生在自主探究、合作交流中去充分体验数学学习,感受成功的喜悦。

  五、说教学过程

  对于本节课的设计,我试图体现以下几个特点:

  (一)在“想猜”中领悟

  平时,只要老师抛出“请小朋友猜一猜”这样一句话,学生们就来劲了,会争先恐后地举起小手急着要猜。可见“猜想”是学生们最乐意解决的问题。这节课引入环节。我就设计了让学生猜想盒子中的礼物,共分三个层次,先让学生“瞎”猜(即漫无边际地猜),学生从中意识到这样是猜不到确定的答案的;然后在我的提示下“犹豫”猜,结果有两种答案,还不能确定,学生从中感悟到有了提示条件,答案的范围缩小了;最后在我的第二个提示下,学生很快猜出了正确的答案,学生从中领悟到了“猜想”要根据提示条件猜。从而引出推理的概念。这个猜想环节与本课时内容相关密切,为本课顺利教学做了很好的铺垫,同时激起了学生的学习兴趣和学习欲望。

  (二)在“游戏”中内化

  游戏活动是学生的至爱,学生一做起游戏就不知疲倦,十分投入。这节课中,我设计猜文具在哪儿、猜动物名字以及猜年龄等一系列活动,让学生参与其中,在活动过程中,学生猜想并从中内化了简单逻辑推理的来拢去脉、前因后果,体验推理的过程,同时进一步培养学生有序、全面思考问题的意识及数学表达的能力。

  (三)在“交流”中提升

  这节课中,教学例1时,先让学生认真观察情境图,理清信息,有哪几个人,有哪几本书,再让学生在独立思考的基础上主动探究解决问题的策略,学会从众多的信息中选择关键的信息推理出某种结论。再通过让学生小组内交流想法,培养学生进一步有序的思考问题的意识,提高学生的数学语言表达能力。同时在学生讲清思路之后,我又提出能不能用一种简洁的方式表达我们的思维过程和结论呢?由此引出连线法,让学生上台边连边说理由,使学生明白原来自己的想法可以用连线的方法更简单,清晰地表示出来。

  (四)在“设计”中深化

  先从生活中简单的,不是??就是??一句话的推理问题入手,调动学生的积极性,再用放松游戏进行巩固。从生活中的推理延伸到数学中的推理,进入数学乐园,数学乐园大门的密码也是一个简单的只有两种情况的推理。再过渡到例1.三种情况的推理。先根据信息确定一种情况,再根据提示判断另外两种情况。在讲解完例1以后,用儿歌小结推理的方法。

  再开始设计练习。练习的层次有易到难,每一个练习的设计都有一定的针对性。第一关:文具在哪儿?是例1的同类型题。第二关:小狗叫什么名字,则有了一定的变化,加入了乐乐比欢欢重,而不再是简单的不是??就是??的推理。第三关:猜猜我几岁?则没有给出一个很直接的信息,而是要结合两句提示,综合运用排除和推理,先由美羊羊和沸羊羊都不是最小的,用排除的方法,确定懒羊羊是最小的,然后再进行下一步的推理。

  最后第四关的推理,又加大了难度,需要学生有一定的语言理解能力,又具备清晰的逻辑思维。在这一关的过程中我还是采取了先集体收集信息,有哪几个人,他们是干什么的,再让学生小组讨论,讨论出结果以后再独立连线,然后梳理清自己的想法,最后请学生汇报,集体反馈交流。然后教师小结。

《数学广角》说课稿5

  一、说教材及学生学情分析

  在二年级上册的教材中,学生已经接触了一点简单的排列与组合的知识,学生通过观察、猜测以及实验的方法可以找出简单的事物的排列数和组合数。《小学数学课程标准》中指出:“重要的数学概念与数学思想宜逐步深入。”因此本册教材在学生已有相关知识经验的基础上,继续让学生进一步系统、深入的学习排列组合的数学思想及更为复杂排列组合问题。

  并根据《标准》中提出的要求:“在解决问题的过程中,使学生能够进行简单的、有条理的思考。”初步培养起学生有顺序、全面的思考问题的意识。并且,排列与组合这一数学思想将一直影响到学生的后继学习,在高中数学的学习中,学生将全面学习相关知识,排列组合知识在生活生产中应用很广泛,由于其思维方法的新颖性与独特性,学习时要遵循“不重不漏”的原则,它又是培养学生思维能力的不可多得的好素材。为学生今后在高中阶段进一步学习复杂的排列组合问题打下基础。

  二、说教学目标

  根据大纲的要求和教材的编写内容以及三年级学生的认知能力水平,本节课我做了如下教学目标:

  1、学生通过观察、猜测、实验、简单的计算等活动,找出简单事物的排列数。

  2、培养学生初步的观察、分析及推理能力,以及有序地、全面地思考问题的意识.

  3、使学生在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。

  4、使学生在探知新知的过程中,感知到生活处处有数学,激发学生学数学、爱数学的数学学习热情。

  这样的目标设计,更多的注重了学生的学习过程以及情感体验,打破了传统教学中过于注重概念灌输的教学模式,更多体现了教材对数学广角这一新增内容的编写意义。

  三、说教法学法

  根据《小学数学课程标准》要求小学生只需“通过观察、猜测以及实验的方法可以找出简单的事物的排列数和组合数”即可,因此对于这部分问题的解决,根据学情测试可看出,大多数学生对这类问题会采用非常直观的画图法或是文字描述法来解决。

  在课堂教学中,我通过小活动把知识点的内容串联起来,尽量做到教师精讲学生多练,使学生在玩中学、在实践中体验,以达到课标要求的在教师的引导下,师生互动,合作交流,自主探究的课堂教学模式。

  四、说教学流程

  第一部分:

  活动导入利用小明开皮箱密码锁这一情境进入教学,使学生不再感到数学是枯燥的,激发学生参与学习的积极性。

  第二部分:

  借助活动,体验搭配这一环节,围绕1、3、5组成两位数这个简单数字排列问题,我设计了相关的实践活动。让学生以小组合作,通过讨论的方式主动获取知识,教师只是在关键处启发、点拨,留给学生充分的时间与空间,让学生从始至终参与学习知识的全过程,领悟到知识的真谛。

  在汇报时,学生可能会出现找不全或是重复的情况,这时,我不直接告诉学生那种答案对,而是让学生自己分析、判断,找出搭配过程中出现的问题,找到正确答案。为了让学生能归纳出搭配的方法,我利用课件演示,搭配数字的过程,让学生看出来搭配时有先有后,适时引导,引导学生归纳出搭配的方法:也就是要做到有序搭配,做到不重复、不遗漏。

  第三部分:

  运用知识,拓展搭配在学生初步掌握了有序地进行搭配后,出示0、1、3、5组成两位数,使学生感知0不可以出现在最高位,进一步加强学生对知识的学习和理解。第四部分:通过练习,加强学习通过“做一做”第1、2题的练习,巩固所学知识,加强学生对知识的内化和吸收。

  最后,我在下课前让学生自由发言谈谈对“数学广角——稍复杂的排列问题”这部分内容学习的收获,根据学生的不同发言再加以小结,以此来总结概述本部分所学的知识内容以及解决这些问题的方法。以此来结束本部分知识内容的教学。

  五、说板书设计

  数学广角——搭配有序排列,不重不漏(固定十位法、固定个位法等)

  六、说教学反思

  这一数学知识学生在二年级已经接触,三年级难度又有所提高,组合知识在生活生产中应用很广泛,由于其思维方法的新颖性与独特性,学习时要遵循“不重不漏”的原则,它又是培养学生思维能力的不可多得的好素材。本节课的活动性和操作性比较强,并且在一系列的活动中渗透数学思想,围绕这一目标要求进行了实践,感觉基本上达成了本课的教学要求,同时也在教学实践中暴露出一些问题,下面结合本节课教学的情况进行反思。

  1、创设生活情境,激发学习兴趣。

  在教材中,这一部分内容是这样编排的:例2编排的是服装搭配,属于组合内容;在练习中安排了一些配合例题的巩固性练习。在备课时,我对例题的素材进行反复的思考,并且参考了许多相关的案例设计。经过多次更改,创设“游数学广角”的`故事情境,穿衣服--吃早点--游数字乐园(数字搭配)--拍照--吃午餐--买礼物一系列的情境。内容贴近学生生活实际,使学生体会数学的应用价值。学生乐意学,主动学,不仅获得了知识,更获得了积极的情感体验。

  2、巧妙设计教学环节,渗透数学思想。

  本节课选择的四个教学素材并不是随意组合的。而是经过精心考虑的,各自承载着不同的教育教学价值。比如在服装搭配这一环节,重点是培养学生有序思考的数学思想,使学生明白怎样找出一种既不重复又不遗漏的搭配方法。

  同时,在这一环节中我根据三年级学生的思维特点,在探索解决问题的方法时,要让学生借助学具,有用连线的方法、有用文字书写的方法,逐步抽象出有序的搭配方法,使学生的思维由具体过渡到抽象。本环节的引申部分,重点是在有序思考的基础上让学生体验个性化、简洁化的表示方法,使学生明白各种不同的搭配可以用尽可能简单的数字、字母、符号表示出来,同时在素材的搭配种类上也有了拓展,发展了学生的思维。增加了学生浓厚的学习兴趣。

  3、尊重学生的主体地位。

  在寻找搭配方法时,我给学生提供自主探究、合作交流的机会,让他们在探索活动中得出避免重复和遗漏的方法:按一定的顺序、逐一搭配,才能不重复、不遗漏,体验搭配的有序性。在经历探索的过程中,把学习的主动权交给了学生,使学生体验学习数学的乐趣。

  本节课的不足之处在于:尽管在教学中我精心设计了一系列的数学活动,但部分学生在练习中还是出现了重复或遗漏现象。学生不能灵活运用本课所学内容,有些题型略加改变,学生便无从下手了。

《数学广角》说课稿6

  一、说教学内容

  “烙饼问题”是人教版《义务教育课程标准实验教科书·数学》四年级上册P112“数学广角”中的内容。主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的应用。烙饼虽然是我们日常生活中常见的一种家务劳动,但里面蕴涵的数学问题和数学思想却是深刻的,教材的编排目的是通过日常生活中烙饼的简单事例,让学生尝试从解决问题的多种方案中寻找最优方案,从而向学生渗透优化的思想,让学生体会统筹思想在日常生活中的作用,使学生感受到数学的魅力。

  二、说学情

  因为四年级的学生已经有了一定的解决问题的能力和基础,可以说,在日常的学习生活中,学生能很容易找到解决问题的方法,而且还会找到解决问题的不同策略,但这里的关键是让学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生的解决问题的能力。本节内容,“烙饼问题”学生是陌生的,而且“烙3个饼”的最佳方法与实际生活是有距离的,给学生的理解带来了困难。如何突破难点,让学生真正掌握,初步感受优化的数学思想方法呢?这对于学生来说还是比较抽象的。基于以上思考,我制定了以下教学目标:

  三、说教学目标

  1.使学生通过烙饼这一事例,初步体会运筹思想在解决实际问题中的应用。并认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识.

  2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的'能力。 这部分知识对学生来说,比较抽象,难以理解的。特别是“烙饼的数量与时间之间的规律”的探究是本课的难点。指导探究“三张饼”的最优化方案是本课的重点。

  四、说学具、教具准备

  学具为每组学生三个硬币,为攻破三个饼烙法提供实践操作材料。变抽象为直观。在教具的安排上,我同样安排了“三张饼”作演示用,并以直观的多媒体相辅,进一步增加直观性,提高教学效率。

  五、说教学策略

  新课程积极倡导自主、合作、探究的学习方式。本着以学定教、教服务与学的教学思想。在教学活动中,主要运用自主探究合作的学习方式进行教学,在突破本课重点时通过情境创设,激发学生学习兴趣,变“要我学”为“我要学”,在探究最佳方案时充分发挥学生的主动性,让学生小组合作自己动手操作,在操作的过程中发现问题、解决问题,体会解决问题时优化思想的应用。体现“做中学”的理念。在教学活动中,体现由引——帮——放的教学策略,符合学生的认知规律。在教学过程中,采取多媒体辅助教学,通过多媒体的直观演示,让学生观察、探索、思维与语言表达结合在一起,使学生对烙饼问题有一个形象的感知,并利用多媒体将知识直观动态地展示出来,同时作用于学生的感官,调动学生的学习积极性,给学生充分的时间和机会让他们主动参与获取知识的过程,培养学生自主学习意识与创新意识。

  本着“将课堂还给学生,让课堂焕发生命的活力”的指导思想我设计了六个板块的内容:

  第一二个板块是创设生活情境,激发学习兴趣。

  目的有两个:一是拉近与学生的距离,二是为本节课提供一种好的环境。

  第三四板块是自主探究,优化策略。

  这一部分内容通过“操作感悟——抽象内化——巩固应用”三个片段,使学生在教师的点拨引导下,沿以下四个步骤:“两张饼的烙法(基础)→三张饼的最佳烙法(难点)→双数饼、单数饼的烙法(提升)→最佳方案、双数饼:两张两张烙;单数饼:两张两张烙+最后3张饼交叉烙(优化)进行探究。

  1.探索烙3张饼的最少时间是本节课的重点也是难点,优化的数学思想只能是“渗透”而不能“明透”,也就是说只能让学生在潜移默化的过程中理解,而不能仅仅靠传授。因此,本课中蓄势----为探索最佳方法打基础的方法,自认为运用得恰到好处。例如,围绕“烙2张饼最少要花6分,为什么烙1张饼与2张饼所用的时间一样多呢?你们是怎么想的?”这个问题,让学生体会烙2张饼是用足了空间,而烙1张饼浪费了空间和时间,为探索烙3张饼埋下了伏笔。

  2.学生的自主探索是需要动机的,如果总是在教师的命令之下被动探索,那么效果是不会好的。要让学生主动探索,产生探索的源动力,关键就是要把握认知冲突,引导学生积极地投入到探索的全过程中。本课中,探索烙3张饼的最少时间,就是运用了“初步尝试暴露问题,再引导重新操作”的策略,学生的探索积极有效。例如,在探索最佳方案时请学生回忆一下,“1个饼和2个饼都要用6分的原因是什么?”的问题,学生积极思考,合作操作,谜底终于被慢慢揭开----原来只要不让锅浪费空间,就可以做到时间最少。

  3.培养学生的应用意识和渗透数学优化思想,不是靠几道题目的讲解和练习就能完成的,而是需要随时随地引导学生自觉运用,在运用中逐步培养和提高应用意识。本节课一个明显的特点就是,不以探索到的具体某次烙饼的最佳时间为终极目标,而是重点引导学生在后继的学习过程中掌握方法,自觉应用。例如,探索了3张饼的最佳方法,在讨论烙5张饼时,学生想到了把5分成2张和3张进行思考,因为都有前面的结论和方法,只要6+9=15分就可以了,而不是拘泥于“零起点”去进行从头探索。同样,在7张、9张时推广应用,逐步探索得出规律。

  第五六板块是总结内化,拓展应用。

  本课教学中,我通过在烙两个饼、三个饼的优化方案的基础上,通过烙更多的饼,把学习过程层层推进,把静态的知识转化成了动态的过程,让学生在思考、讨论中逐步构建并完善自己的知识体系。尤其是,本课的点睛之笔还在于课末的生活化应用。众所周知,烙两个饼、三个饼是研究统筹思想的精典范例,但如果仅局限于此,还不够深刻,至少在提升学生思维品质上还有所欠缺。因此,在课末我安排了“为妈妈设计烙饼方案”的环节。通过围绕“要烙 15 个饼,怎样烙时间最省”这一问题的讨论,让学生自觉地意识到“把 5 个饼看成一份”,从而把新问题转化成旧知识,在学生的脑海中牢固地构建起烙饼策略的数学模型。

  六、教学中的困惑

  《课数课程标准》指出:学生的数学学习内容应当是现实的,有意义的,富有挑战性的。现在人人都知道数学于生活,应该体现数学生活化,生活数学化,但是如果脱离了我们的生活实际,即便这样时间最短又有什么意义呢?以烙饼为例:为了体现时间最短,在烙三个饼子时,先烙1号2号的正面,然后把其中1号翻个面,另一2号则拿出去放一边,同时把外面的3号饼放进去烙,两分钟后,1号饼熟了拿出,同时把锅里的3号翻个面、把外面的2号饼再放进锅里烙,如此折腾确实花费的时间是最短的,在时间上来说确实是最优化的策略,可是在现实生活中没见过一个饼子没烤熟,只烤半边,然后放一边凉一会再烤另半边的做法,应该说在理论上是最优化策略,在生活中就不是那么回事了。能不能换一个既贴切生活又能渗透优化思想的例子呢?

《数学广角》说课稿7

  一、教学内容:

  教材第108页例1,练习二十四第1、2题。

  二、教材分析:

  “渗透集合知识”是人教版《义务教育课程试验教科书数学》三年级下册第九单元《数学广角》第一课时的教学内容。小学生从一开始学习数学,就已经在运用集合的思想方法了。例如,学生在一年级学习数数时,把1个人、2朵花、3枝铅笔等等用一条封闭的曲线圈起来表示,这样表示的数学概念更直观、形象,给学生留下的印象更深刻。又如,我们学习过的分类实际上就是集合理论的基础。本节课教学的例1是借助学生熟悉的题材,渗透集合的思想,并利用直观图的方式求出两个小组的总人数。在教学例1时,我注重了三个方面的问题。(1)集合的理解。(2)有关计算。(3)巩固练习。基于以上的安排,结合新课程标准,我确定了本节课的教学目标:

  三、教学目标:

  (1)知识与技能:初步体会集合的思想方法,能够借助直观图及利用集合的思想方法解决简单的实际问题。

  (2)过程与方法:使学生能借助具体内容,体会集合的思想方法,利用集合的思想方法去解决问题。

  (3)情感态度与价值观:培养学生观察思考问题的能力。

  四、重难点

  重点:初步体会集合的思想方法。

  突破方法:借助具体内容,初步体会集合的思想方法。

  难点:用集合直观图来表示事物。

  突破方法:通过动手操作,利用集合直观图来表示事物。

  五、教法学法

  集合问题属人教课改版小学数学第六册的智力游戏,所以学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的集合问题有较简单的,一题多法的,还有课后让学生继续研究集合问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;同时由于集合问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作活动中领会集合问题的基本结构,并根据确立的教学目标和学生的认知特点,在教学设计中,我将特别注重以下几个方面:

  1、创设情境,适时引导

  数学来源于生活,并应用于生活。我通过学生熟悉的队列问题导入新课,使学生置身于熟悉的生活情境中,多种感官被调动起来,主动参与学习过程。

  2、设置认知冲突,感知体验集合图

  以“参加两个兴趣小组的一共有多少人?”这一问题冲突为线索,让学生想想可能会出现的情况,当学生解答过程中出现分歧时,进而引导学生借助一种图(集合图)来理解解决这一问题,让学生充分感知体验到集合图的作用。

  六、教学准备:导学卡、数字卡片。

  七、教学流程:

  1、创设情景(引出目标)2、自主探究(感知目标)3、巩固加深(巩固目标)4、课堂小结(再现目标)

  (一)情境引入、小故事引出大学问(理解重复)

  我是用了一道同学们儿时的问题,在站队的时候,有一个小朋友从左数是第5个,从右数还是第5个,算一算这个队一共多少个同学?这个情景的设计,是让学生充分理解重复。把枯燥的数学知识贯穿于小学生实际生活当中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

  (二)探索新知(体会集合)

  1、在教学例1时,我大胆的将例题进行了改写,我没有按照常规的教学方法先出示统计表告诉学生参加语文兴趣小组和数学兴趣小组的学生名单,让他们通过观察统计表得出信息,参加语文小组的有5人,参加数学小组的有7人,然后让学生提出问题并解决问题。而是直接告诉了学生参加两个兴趣小组的人数,然后让他们算一算参加两个小组的一共有多少人?学生列出算式5+7=12(人),此时我不去及时评判,目的.在于我要让学生猜想可能会发生的情况,然后等学生掌握了新知识后,自己去发现、自己去解正,为锻炼学生的判断能力有意设局的。

  2、接下来引导学生用图示的方法表示两个课外小组的人员组成情况。在这个环节我设计了一个对号入座的活动,请一名男生和一名女生到台前去贴号,再贴号的过程中当问到有什么好办法能一眼看出来两个组的人数时?很自然的就引出了集合圈,让学生理解了集合的意义,导出了课题《集合》。很快学生发现,既参加了语文小组又参加了数学小组的两名学生,安排在中间的位置是最合适的,这样就组成三个部分,如中间部分表示既参加语文兴趣小组又参加数学兴趣小组的同学,另外两边一边是只参加语文兴趣小组的同学,一边是只参加数学兴趣小组的同学。

  3、经过学生和教师共同完成集合,再次的确定两个学生既参加了语文小组又参加了数学小组,计算时重复了,进而让学生进行小组合作,讨论交流得出在计算参加语文小组和数学小组总人数时,一定要减去重复的数据2,得出正确的算式5+7—2=12(人),在这个过程中,还要体现算法的多样化,并不是只有这一种列示方法。这一过程,锻炼了学生的观察能力和思维能力以及运用已有知识解答新问题的能力,培养了学生运用数学知识的意识;不但知其然,而且知其所以然。

  (三)巩固加深

  这是教学中不可缺少的环节,这一环节是学生巩固知识,形成技能,技巧,发展智力的重要过程,还要确保学习任务的圆满完成。因此,练习的巩固我主要设计了两道习题。第一道题让学生把动物的序号填在合适的位置,一边是只会游泳的,一边是只会飞的,还要让学生说出中间部分表示的是什么?第二题是让学生算算文具商店两天一共进了多少种货?这道题中两天进的货是以图画的形式出现的,这就要求学生在完成的过程中一定要认真观察,养成细心的好习惯。

  (四)总结

  让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。只要学生在平时多观察,就会发现在日常生活中,有很多事物具有双重性,或者在数量上是重复的。我们可以运用画集合圈的方法来分析类别,再计算它们的数量;但是在计算总数时必须减去重复的数量;还可以将左中右圈里的数量相加。

《数学广角》说课稿8

  六年级数学下册数学广角教案

  数学广角

  第一时《抽屉原理》

  教学内容:教材第70、71页的例

  1、例2

  教学目标:、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

  2、会用“抽屉原理”解决简单的实际问题。

  3、通过操作发展学生的类推能力,形成比较抽象的数学思维。

  教学重点:认识“抽屉原理”。

  教学难点:灵活运用“抽屉原理”解决实际问题。

  教学方法:小组合作,自主探究。

  教学准备:若干根小棒,4个纸杯。

  教学过程:

  一、创设情境,导入新知

  老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。

  师:象这样的现象中隐藏着什么数学奥秘呢?这节我们就一起来研究这个原理。

  二、自主学习,初步感知

  (一)出示例1:4枝铅笔,3个文具盒。

  观察猜测

  猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?

  2、自主探究

  (1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。

  (2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。

  (3)交流讨论,汇报。可能如下:

  第一种:枚举法。

  用实物摆一摆,把所有的摆放结果都罗列出来。

  第二种:假设法。

  如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。

  第三种:数的分解。

  把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。

  (4)、比较优化。

  请学生继续思考:如果把枝铅笔放进4个文具盒,结果是否一样呢?把100枝铅笔放进99个盒子里呢?怎样解释这一现象?

  师:为什么不采用枚举法来验证呢?

  数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。

  3、引导发现

  只要放的铅笔数比盒子的数量多1,不管怎么放,总有一个盒子里至少放进2枝铅笔。

  (二)出示例2:把本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?7本书会怎样呢?9本呢?

  、学生尝试自已探究。

  2、交流探究的结果,可能如下:)枚举法。

  共有3种情况。在任何一种结果中,总有一个抽屉至少放进3本书

  2)假设法。

  把本书“平均分成2份”,÷2=2…1,如果每个抽屉放进2本书,还剩下1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。

  由此可见,把本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。

  同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。

  9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进本书。

  3、观察发现

  学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。

  4、介绍原理。

  师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。

  三、应用原理,解决问题

  完成教材第72页“做一做”第1题

  四、全总结,回归生活、通过今天的学习你有什么收获?

  2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?

  第二时抽取游戏

  教学目标

  知识与技能目标:进一步掌握抽屉原理,掌握抽屉原理的反向求法。

  过程与方法目标:通过各种活动培养学生自己动手动脑去思考的习惯。

  情感、态度与价值观目标:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

  教学重难点

  使学生理解抽取问题中的一些基本原理。

  2找到抽屉原理问题中被分的物品。

  教学过程

  一、创设情境、引入新:

  师:一天晚上,有一个小女孩正要从抽屉里拿袜子。抽屉里有黑白两种颜色的袜子各10双。突然停电了。小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?

  学生思考、发言。

  师:学习了这节我们就能解决类似的问题了。

  二、活动探究、深入了解:

  (一)出示例3:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸出几个球?

  、学生提出猜想。

  2、用预先准备的学具,小组合作交流。

  4、小组反馈,师相机板书:

  3、得出结论:把颜色看作抽屉。

  有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。

  (二)研究规律

  师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出两个同色的球,至少要摸出几个球?

  分小组讨论后汇报。

  再出示做一做第2题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关。

  小结:确定什么是抽屉什么是物体是解决抽屉问题的关键。

  三、巩固训练,促进内化

  、做一做

  2、解决前有趣的问题

  3、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,(1)你至少要摸出几根才敢保证有两根筷子是同色的?

  (2)至少拿几根,才能保证有两双同色的筷子?为什么?

  四、全总结,畅谈收获、通过今天的学习你有什么收获?

  2、回归生活:你还能举出一些能用抽屉原理解释的'生活中的例子吗?

  第三时

  节约用水

  教学目标

  知识与技能目标:通过活动进一步巩固巩固比例知识、简单的统计知识,培养学生综合应用所学过的知识的能力

  过程与方法目标:通过活动培养学生搜集和处理信息的能力,使学生感到数学和现实生活的联系。

  情感、态度与价值观目标:增强学生“节约用水,从我做起”的责任意识,养成良好的品德。

  教学重难点

  所学知识的综合应用

  教学过程

  一、情景引入,提出问题、(屏幕显示:地球上最后一滴水将是人类的眼泪!)请学生说说对这则广告的理解。引出题。

  2、提出问题:为什么要节约用水呢?

  二、问题讨论,明白道理、交流前搜集的信息,畅谈有关水的认识。

  2、展示相关资料,了解地球上水资源状况。

  3、交流感想,强化体验。

  三、参与活动,亲身体验

  师:水龙头坏了或没有关紧,水一滴一滴往外流(多媒体出示相关图片),遇到这种情况,你会怎么做?

  师:前我请同学们做了一个漏水试验,我们一起来看看试验结果吧!、小组交流、展示成果。(一分钟大约滴水0毫升)

  2、计算统计,交流感想。

  师:根据上面的滴水速度,完成下面的统计表。

  一个漏水水龙头漏水情况统计表

  时间

  分钟

  小时

  24小时

  年

  水量(升)

  一个水龙头一年浪费多少水?(1立方米约重1吨)

  3、评价家庭用水状况,提出节水建议。

  4、(出示)小明刷牙时不间断放水30秒,用水约6升。小刚用口杯接水刷牙,需要3口杯水,每杯用水约02升。

  A、小明一次刷牙的用水量相当于小刚多少次刷牙的用水量?

  B、采用节水刷牙的方式,如果一个三口之家按每人每日刷牙两次算,那么每月(30天计算)可节水多少升?

  、节约的这些水,如果以一户三人,每户月均用水量为8吨计算,够你家用几天?

  (独立分析计算、汇报计算结果,交流想法)

  四、解决问题,提出方案

  分组讨论一下节约用水的措施。、学生分组讨论,多媒体演示生活中的节水片段。

  2、出示节水倡议,生齐读:节约用水,从我做起,从节约每一滴水做起。

《数学广角》说课稿9

  教材分析:我这节课所教授的内容是人教版小学数学四年级下册第八单元数学广角中的例1,是探讨关于一条线段的植树问题并且两端都要栽的情况,让学生经历猜想、试验、推理等数学探索,从简单的情况入手解决复杂的问题,让学生选用自己喜欢的方法来探究栽树的棵树和间隔数之间的关系,并启发学生透过现象发现规律。

  设计理念:让学生在解决实际问题的过程中发现规律,抽取出其中的数学模型,找到解决问题的有效方法,经历分析、思考的过程。因此,本课制定了三个教学目标:

  1、通过探究发现一条线段上两端要种的植树问题的规律。

  2、学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点:

  引导学生从实际问题中探索并总结出棵树与间隔数之间的关系。

  教学难点:

  把现实生活中类似的问题同化为“植树问题”,并运用植树问题的思想方法解决这些实际问题。

  在教法上:在本节课的教学中,我根据教学内容的特点和学生的实际情况,安排了两次动手操作,引导学生积极参与,使学生在小组合作的学习活动中,加深对植树问题棵数与间隔数之间关系的'认识与理解。

  1、关注学习起点。

  学生是数学学习的主人,在教学中,我选取生活中学生熟悉的事例,在教师的引导中让学生探究,建立知识表象,使学生得到启迪,悟到方法。把学生的主动权交给学生,让课堂真正成为学生学习的舞台。

  2、体验生活中的数学。

  “数学来源于生活,而又应该为生活服务。”在学生已经发现两端要种的植树问题的规律后,我开放课堂时空,让学生从路灯的问题,让学生直观地认识生活中的许多事例看上去跟植树问题毫不相似,但是只要善于观察题中的数量关系,就明白它与植树问题很相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。使学生充分感受到数学知识来源于生活,又回归于生活。

  在学法上:本节课学生主要采用动手操作、合作交流的方法进行学习。

  教学流程:本节课我从以下几个流程进行教学推进:一、情景导入,了解“间隔”“间隔数”的含义二、引导探究,发现“两端要种”的规律

  1、创设情境,提出问题。

  通过在小路植树的现实问题情境,提出“共需多少棵树苗的问题”。学生尝试猜测得到不同的答案,到底哪一种方法好呢?引导学生通过画图实际种一种去检验。通过模拟种树,使学生体验到一棵一棵种到100米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。

  2.简单验证,发现规律。

  通过复杂的问题简单化,学生对棵树和间隔数的关系已有了一定的感性认识,再经过学生实际操作,为学生顺利发现并总结规律打下了基础。

  三、通过练习的形式掌握规律。

  这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。

  这节课我试图通过教师的引导点拨、学生的动手操作,让孩子们自主探究植树问题的几种情况,初步建立模型,寻求解决问题的策略,让他们在玩中学、在学中得到感悟。

《数学广角》说课稿10

  我说课的内容是义务教育课程标准实验教科书数学三年级下册第九单元数学广角中的第一课时《重复》。

  一、教材分析

  重叠问题是日常生活中应用比较广泛的数学知识。对于三年级学生来说,学习这部分内容,思维力度较强,有一定的挑战性。在本节课前,学生虽然已经学习过分类的思想方法,但集合这部分内容比较系统、抽象。针对三年级学生的认知水平,在这节课我只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础。

  二、设计理念:

  《课程标准》中明确指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,让学生在生动具体的情境中学习数学。”根据这一理念,结合本节课教学内容,我大胆对教材进行再创重组,以学生喜欢的游戏活动进行教学,力求让学生自主学习,并努力引导学生积极思考,充分激发学生的学习兴趣,努力做到以学为主,当堂达标。

  三、教学目标:

  根据课标的要求、教材内容和本班学生实际我设立了如下教学目标:

  1、使学生借助贴近生活的情境,利用集合的思想方法,解决简单的实际问题,并能运用数学语言进行描述。

  2、通过丰富、直观的游戏活动,发展形象思维,提升抽象思维能力。

  3、使学生在主动参加数学活动过程中,获得成功的体验,提高学生学习数学的兴趣与能力。

  本节课的重点是让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。难点是对重复部份的理解。

  四、教学过程

  本节课我主要遵循多学少教的原则,设计了以下五个教学环节:

  (一)激趣导入,感受新知

  创设“理发师的困惑”的问题情境,从学生熟悉的生活经验,两对父子的身份关系入手,在解决为什么只有三个人的困惑中,理解两对父子中的重复身份,引导学生用四个手指表示重复关系,使学生初步建立“重复”的数学模型。这样的设计有利于突出重点,突破难点。

  (二)活动体验,揭示新知

  在这一环节我设计了抢椅子和猜拳两个游戏,这两个游戏具有很强的趣味性,我会巧妙的抓住“抢椅子”3人和“猜拳”4人,一共是7人,为什么只有6人站起来?进行质疑,让学生自主对教师的.质疑作出合理的解释,最后引出请呼啦圈作裁判,进而引导学生继续主动学习。

  (三)深度体验,理解新知

  在这一环节里我利用呼拉圈来帮助学生直观理解集合思想。参加两个游戏的学生分别站到两个呼啦圈里,并引导学生自主把两个呼拉圈相交,让重复参加游戏的学生站在相交处。这样学生就能通过亲身经历探究创造出学生心中集合圈,这时老师帮助学生把呼拉圈学问提升到数学的集合圈,利用呼拉圈画出数学的集合圈,并用贴名条的方法,把参加游戏同学的信息补充完整,来进一步理解集合圈各部分表示的意思。我想通过这样的自主发现学习,让学生真正成为课堂的主人。

  (四)解决问题,运用新知

  让不同的学生学习不同的数学,让不同的学生有不同的发展,是我设计练习的宗旨。因此,在练习中我设计了这样几个环节:

  1、给动物分分类。再次巩固对集合图的理解。

  2、根据直观图画,计算商店一共进货多少种,让学生利用集合知识解决问题。

  3、根据统计表解决一共有多少名同学的问题,让学生在独立解题的过程中感受到所学知识对解决问题的价值。

  习题的设计由浅入深,循序渐进,既培养学生运用所学知识的能力、,又让学生在应用知识中体验了数学的价值。

  (五)回归生活,拓展新知

  这是本节课的最后一环节,我将组织同学们统计班级内爸爸吸烟和喝酒情况,来进一步巩固本节课所学知识,并让学生找出既不吸烟也不喝酒的爸爸的位置,从而拓展渗透全集概念。

  总之,本节课的设计我遵循以学生发展为本的教育理念,多学少教,以学定教,联系生活实际激发学习兴趣,使学生体会数学课堂学习的快乐,体验幸福的数学学习生活。

  以上是我对本节课的一些设想,还有待于在实践中去完善,如有不当之处,敬请各位评委给予批评和指正。

《数学广角》说课稿11

  首先我对教材进行如下分析:

  第一点教材分析:

  “数学广角”是义务教育课程标准实验教科书二年级上册开始新增设的一个单元,也是新编实验教材向学生渗透数学思想方法做出新的尝试。

  本次《数学广角》其目的在于试图让生感知重要的排列、组合数学思想及其方法。本课主要对例1进行教学,通过一系列的活动,培养学生初步的观察、分析能力,以及有顺序地、全面地思考问题,为学生今后学习组合数学和学习概率统计奠定基础,解决一些实际生活问题。

  第二点学情分析:

  本教材处于二年级上册,简单的排列组合对二年级学生来说已有不同层次的接触,也有一定的生活经验。但大部分学生还不能有顺序地、深入地全面思考问题。同时二年级的学生好动,注意力不够集中,以形象思维为主。因此在数学学习中注意安排生动有趣的活动,采用直观教学方法,提高数学兴趣,吸引学生注意。培养学生有顺序地、全面地思考问题意识。

  第三点教学目标:

  根据教材与学情,我确定以下教学目标:

  1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

  2、体验探索简单事物排列与组合规律的过程,培养学生初步的观察、分析能力。

  3、培养学生有顺序地全面地思考问题的意识。

  4、感受数学与生活的紧密联系,激发学生学好数学的信心。

  其中教学重点是:向学生渗透数学思想方法,并初步培养学生有顺序地、全面地思考问题意识。(因为学生抽象思维较弱,对多个事物的排列与组合,常常出现遗漏、重复。所以本课教学重点定为初步培养学生有顺序地、全面思考问题意识。)

  这节课的教学难点是:感受简单事物排列与组合的不同,让学生在合作、交流探索中突破难点。(因为二年级学生积累知识,理解能力有限,容易将排列和组合混淆,因此我将感受简单事物排列与组合的不同作为难点。)

  本节课的教学准备是:师生共同准备数字卡片0、1、2、3,学具。

  第四点说教法:

  本课教学,我准备从学生的生活情景出发,对教材进行灵活处理。利用学生到数学广角做客作为新课的引入,运用直观情境教学例1,让学生通过摆一摆,说一说,从中发现要想摆得快又摆得准确,就必须有序地排列。(理念是动手操作是学生由具体形象思维向抽象逻辑思维过渡的必要手段,是尝试开启智慧的钥匙,给学生更多的动手机会,让学生亲身体验探索简单事物排列和组合规律的过程,在活动中主动参与,在活动中发现规律。)然后通过课堂演示法、讨论法、谈话法多种方法的组合,激发学生的求知欲望,从而提高课堂效率。

  第五点说学法:

  我通过合理地安排小组学习、共同探究、独立思考的学习模式,使每名学生能充分发挥自己的特长,便于相互学习、取长补短、共同成长。让所有学生在课堂上真正动起来,提高解决问题的能力,巩固所学知识。

  第六点教学过程:

  第一步创设情境,导入新课。

  上课伊始,老师利用谈话创设情境:在数学王国中,有一个非常有趣的地方,哪里有许多的挑战,你们敢去吗,想去吗?今天就让我们一起走进数学广角看一看吧。在此揭示课题并板书:数学广角。(这样的创设情境,激发学生的学习兴趣,符合低年级儿童好奇、好胜的心理特点,抓住了“童心”,为新课的顺利进行作好了铺垫。)

  第二步学习排列知识

  第1环节初步感知排列的方法。

  根据课本内容进行变化,我设计了比较生活化的“客人来访”,把数字“1”和数字“2”当作两位小客人来到数学广角做客,把数字1和2配上音乐、图画、鲜艳颜色进行多媒体演示。告诉今天学生小客人给我们带来一个问题:由1、2这两个数字可以组成哪些两位数?让生先猜一猜,同伴之间再摆一摆,并进行交流(利用客人来访再提出问题,通过猜一猜,摆一摆,说一说这一系列活动,让学生不悱不发。)根据学生的回答板书12、21。如果学生说出11、22这样的两位数,这时就要注意引导学生观察,这样对吗?让学生说出理由:只有一个数字1和2,不能摆出。接着抛出问题:12、21这两个数有什么不同?(引导学生说出2个数字交换位置,顺序改变,数也发生改变。这就是交换法并板书)

  第2环节探索排列的方法。

  首先提出问题,让生思考。接着利用多媒体出示活动要求:小组合作,3人摆,一人记录,由1、2、3三个数字可以摆出哪些两位数?摆完后,小组交流,你摆了哪些数?你是怎么摆的?(采用小组合作学习是为了让学生感受在操作中获得成功,在交流中找到方法。)比一比,哪组摆得最多?哪组写得更全面呢?(这个问题是为了让学生有序地全面解决问题,激发学生的求胜心,从而提高学习兴趣。)

  然后教师根据学生回答板书,接着追问:还有不同的数吗?你是用什么好方法摆出这些数的?而且做到不重复不遗漏呢?这时整理学生的汇报,找出相似的地方板书,例如12、13,十位上都是1,也就是先确定最高位上的数,再确定个位。还有21、23,31、32这些两位数,都是这样摆的。这种方法是最好的方法。还有学生会考虑先确定个位和运用交换法都可以摆出这些两位数。应大力鼓励和表扬学生。之所以只板书确定十位这种方法,因为这是最优的方法,利于学生今后进行多数字的排列。(这个过程这样设计是因为:在学生的不断探讨中,让学生自己发现,自己纠错,培养学生自己解决问题的能力,此时用板书方便学生观察,归纳总结。)

  最后师生共同总结,用课件演示。接着用鼠标指着交换法,向学生提问:这3组两位数是用哪些数字摆出的?引导学生说出这3组两位数是从1、2、3这三个数字先选出2个数字,再交换位置。(说明这点是为了让生感受这种方法既运用了组合知识,又运用了排列知识,为今后解决更难的数学题奠定基础。课件演示是为了让学生直观感受,形成整体的认识,加强对排列过程的理解,同时加深印象,初步形成有序地全面解决问题的意识。)

  第3个环节让学生再次动手操作,亲身体验。

  让全班学生运用刚才总结的方法,再次让学生动手摆一摆,亲身体验这个过程。(因为学生才是学习的真正主人,老师说得再多,都没有学生亲身体验好,通过再次动手操作,加深学生对排列知识的正确理解,培养学生动手操作和全面思考问题的能力,同时鼓励方法的多样性,给学生自由选择方法的机会,)。

  第4个环节灵活变式,拓展运用。

  接下来进行变式练习:把数字1改为0,用0、2、3任选2个数字能摆出几个不同的两位数?(目的为了让学生感受0不能作为一个数的最高位,告诉学生在平时练习过程中不能照搬照套,要认真读题分析。)

  第三步区分排列与组合的不同。

  第1环节情景演示,感知组合的'方法。

  同学们你们真是勤于思考的孩子,我要向中奖的同学握手表示祝贺,进行实际演示。提出疑问:我和他,我们两个人握了几次手?学生会说一次?接着我问如果每两个人握一次手,三个人握几次手呢?猜猜看?猜测过后,4人小组合作学习,组长做裁判,握一握。学生汇报3次(目的让每个人都亲身体验,感知组合与顺序无关)。

  接着课件演示,三个小朋友握手的过程,显示次数。(加深学生对组合的理解)。

  第2环节探索追问,理解排列与组合的不同。

  老师追问:为什么三个数字能排成六个两位数,而三个人每两个人握一次手,却只握了三次呢?接着小组同学通过讨论交流,再汇报,使学生明白两个数字交换位置变成了两个数,而握手时两个人即使换位置还是这两个人,所以就是一次。(在这里用课件显示,让学生观察对比,区分排列与组合的不同,同时使学生明白像握手这类似的组合可以用符号表示出来,这样也起到发展学生思维的作用)。

  第3环节实际操作,运用所学知识解决生活问题。

  首先运用激励语言对学生今天的学习进行评价:今天你们真棒,为了奖励你们,老师决定给你们每人买一份特别的奖品。这份奖品要5元钱,现在有一张5元,2张2元、五张1元,可以有几种拿法?(这个环节运用语言自然过渡,让学生在活动中轻松学习。)

  通过学生摆学具,多人上台汇报书写,教师整理板书并问学生是怎样拿的?学生很容易想到先拿一张5元的,拿一次。拿5张一元的学生也容易想到。接下来就该拿2元的了,确定拿一张2元的,就要拿3张一元,确定拿2张2元的,就要拿一张元的。(让学生做到有序地解决问题,不重复不遗漏)

  第四步当堂检测,加深理解。

  师告诉学生接下来咱们去逛逛服装店,这里有2件衣服和2条裤子,小朋友们你们想怎样搭配买一套衣服呢?有几种搭配方法。(这一环节重点是培养学生有序思考的数学思想,使学生明白怎样找出一种既不重复又不遗漏的搭配方法。学生可能会说先选一件衣服再搭配裤子(课件演示),有的学生会说出先选裤子再搭配衣服,对于学生出现的情况合理都应大力鼓励和表扬,告诉学生可以从不同角度思考问题。)

  第五步全课总结。

  今天的数学广角有趣吗,你有什么感受和收获?(学生自由发言,畅谈学习收获),老师再和生一起总结,并向学生强调要有序地、全面地看待问题,做到不重复不遗漏。(再次突出本课的重难点)

  师说时间过得真快呀,我们马上就要离开数学广角了,小精灵让我们进行课后调查。(让生将所学知识充分联系生活实际,让生发现生活中处处有数学。)

  第六步课外拓展。

  今天老师想和表现好的3个小朋友中的其中一位站成一排照相,帮老师设想一下,一共有几种不同的照法?(通过准确的数学语言表达,让生理解题意。这当中既有排列知识,又有组合知识。而学生往往会弄成组合问题。首先选出其中1人和老师照相,属于组合。在照相的过程中可以左右交换位置,顺序就会发生改变,也就是不同的照法。使学生明白不能表象看待问题,而要全方位深入思考和分析问题)

  为了让学生对我们今天学的知识有一个整体的认识,我的板书是这样设计的:

  数学广角

  排列的方法:付钱的方法:

  ①交换法:12、21

  ②确定十位:12、13,21、23,31、32

《数学广角》说课稿12

  一、说教材:

  “数学广角简单推理”是新人教版《义务教育教科书数学》二年级下册第109页的教学内容。这是一节有趣的活动课,也是一节逻辑思维训练的起始课。逻辑推理能力是人们在生活、学习工作中很重要的能力。本节课主要要求孩子们能根据提供的信息,进行判断、推理,得出结论,使学生初步接触和运用排除法。教材试图通过一些生动有趣的简单事例,运用操作、实验、猜测等直观手段解决这些问题,渗透数学的思想方法,初步培养学生有顺序地、全面地思考问题的意识。本节课立足学生认知发展水平,在问题设计的难度上都不是很大,一般都有一个可以直接判断的条件,学生只要找准关系句,就能较为轻松地推理出其他的相关结论。让学生亲身经历对生活现象判断的过程,从而锻炼学生的逻辑推理能力是教材编写的重要目的之一。

  二、说学情:

  二年级的孩子由于他们的年龄特点,他们具有较高的学习热情,喜欢做游戏,喜欢与他人合作,同时也具备了一些简单的推理能力。基于以上分析,我们组将整堂课设计成一节猜一猜、做一做的游戏课,让学生通过生动有趣、形式多样的猜测、推理游戏,使学生在具体的情境中感受简单推理的过程,初步获得一些简单推理的经验。培养学生初步的分析推理能力、合作能力。

  三、说教学目标及重难点:

  根据教材的编排意图以及学生的实际情况,我制定了本课的'教学目标为:

  知识技能:让学生了解简单的推理知识,初步获得一些简单推理的经验;培养学生初步观察、分析、推理能力和有条理思考问题的意识。

  过程方法:让学生经历简单的推理过程,体验逻辑推理的思想与方法,体会逻辑推理条件与结论之间的联系。

  情感态度:感受逻辑推理的趣味性、严谨性以及数学结论的确定性,培养学生积极思维的学习品质。

  重点:经历简单的推理过程,培养学生初步的分析推理能力和观察能力。

  难点:培养学生初步的有序地、全面地思考问题及数学表达的能力。

  四、教法、学法

  《数学课程标准》中明确的提出:“要让学生在参与特定的教学活动,在具体情境中初步认识对象的特征,获得一些体验。”所以在这节课的设计中,根据教学内容的特点,我们数学组采取游戏引入、情境教学与谈话引导等方法让学生在自主探究、合作交流中去充分体验数学学习,感受成功的喜悦。

  五、说教学过程

  对于本节课的设计,我试图体现以下几个特点:

  (一)在“想猜”中领悟

  现平时,只要老师抛出“请小朋友猜一猜”这样一句话,学生们就来劲了,会争先恐后地举起小手急着要猜。可见“猜想”是学生们最乐意解决的问题。这节课引入环节。我就设计了让学生猜想,共分三个层次,先让学生“瞎”猜(即漫无边际地猜),学生从中意识到这样是猜不到确定的答案的;然后在我的提示下“犹豫”猜,结果有两种答案,还不能确定,学生从中感悟到有了前提条件,答案的范围缩小了;最后在我的再次提示下,学生很快猜出了正确的答案,学生从中领悟到了“猜想”要根据前提条件去推理的。这个猜想环节与本课时内容相关密切,为本课对顺利教学做了很好的铺垫,让学生领悟到简单逻辑推理其中条件与结果的密切联系,同时激起了学生的学习兴趣和学习欲望。

  (二)在“游戏”中内化 设计猜礼物、猜动物名字以及猜图形等一系列活动,让学生参与其中,在活动过程中,学生猜想并叙理从中内化了简单逻辑推理的来拢去脉、前因后果,体验推理的过程,同时进一步培养学生有序、全面思考问题的意识及数学表达的能力。

  (三)在“交流”中提升

  这节课中,教学例1时,先让学生认真观察情境图,理清信息,再让学生在独立思考的基础上主动探究解决问题的策略,学会从众多的信息中选择关键的信息推理出某种结论。通过让学生小组内交流想法,培养学生进一步有序的思考问题的意识,提高学生的数学语言表达能力。同时在学生讲清思路之后,我又提出能不能用一种简洁的方式表达我们的思维过程和结论呢?由此引出连线法,使学生明白原来自己的想法可以用连线的方法表示出来,给学有余力的学生一个思考的好方法。

  (四)在“设计”中深化

  用推理知识解决了生活中的几个问题后,学生已经有了一定的推理能力。在此基础上让学生在猜一猜,连一连,说一说的游戏闯关中对推理知识深化,进一步加强学生逻辑思维能力的培养,使思维训练层次提高。

《数学广角》说课稿13

  我执教的是义务教育课程标准实验教材小学二年级数学上册第99页例1排列组合。

  一、教材分析:

  “数学广角”是义务教育课程标准实验教科书从二年级上册开始新增设的一个单元,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,本教材在渗透数学思想方法方面做了一些努力和探索,把重要的数学思想方法通过学生日常生活中最简单的事例呈现出来。

  教材的例1通过2个卡片的排列顺序不同,表示不同的两位数,属于排列知识,例1给出了一幅学生用数字卡片摆两位数的情境图,我在设计本课时,我把排列1、2两个数组成不同的两位数,改成了学生喜欢的拼图游戏。游戏后直接进行三个数组成两位数的排列,学生进行小组合作学习,然后小组交流摆卡片的体会:怎样摆才能保证不重复不遗漏。从而找到排数的方法。为巩固排数的方法,我设计了以下几个教学活动:抽奖,握手,搭配衣服,比赛场次、路线等学生熟悉而又感兴趣的生活场景向学生渗透这些数学思想方法,将学习活动置于模拟情景中,给学生提供操作和活动的机会,初步培养学生有顺序地、全面地思考问题的意识,为学生今后学习组合数学和学习概率统计奠定基础。

  二、学情分析:

  在日常生活中,有很多需要用排列组合来解决的知识。如衣服的搭配、路线、乒乓球的比赛场次,彩票的中奖号码等等,作为二年级的学生,已有了一定的生活经验,因此在数学学习中注意安排生动有趣的活动,让学生通过这些活动来进行学习,经历简单的排列组合规律的数学知识探索过程,让学生在活动中探究新知,发现规律,从而培养学生的数学能力。

  三、教学目标:

  1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;

  2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;

  3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。

  四、说教法

  根据学生认知特点和规律,在本节课的设计中,我遵照《课标》的要求和低年级学生学习数学的实际,着眼于学生的发展,注重发挥多媒体教学的作用,通过课件演示、动手操作、游戏活动等方式组织教学。做到

  1、从生活情景出发,为学生创设探究学习的情境。

  我对教材进行了灵活的处理,创设了“拼图”一个游戏情境,做为新课的引入,接着在抽奖,握手,搭配衣服,比赛场次,回家路线等一个又一个的活动情境中渗透排列和组合的思想方法,让学生亲身经历探索简单事物排列和组合规律的过程,在活动中主动参与,在活动中发现规律。

  2、联系生活实际,让学生体会数学与生活的密切联系。

  3、改变学生的学习方式,让学生合作学习,培养学生的合作能力。

  五、说学法

  以小组合作的形式贯穿全课,充分应用分组合作、共同探究的学习模式,在教学中鼓励学生与同伴交流,引导学生展开讨论,使学生在合作中学会了知识,体验了学习的乐趣,思维活动也更加活跃。

  1、联系生活实际解决身边问题,体验学数学、用数学的乐趣。

  2、在具体的生活情景中让学生亲身经历发现问题,提出问题、解决问题的过程,体验探索成功的快乐。

  3、通过动手操作、独立思考和开展小组合作交流活动,完善自己的想法,构建自己独特的学习方法。

  4、通过灵活、有趣的练习,提高学生解决问题的能力,同时寻求解决问题的多种办法。

  六、教学流程:

  学习简单的的排列就是为了在生活中应用,让数学与生活密切联系,并且让学生在活动中发现数学的价值。本节课我力求体现数学的.“活”。

  一、创设情境,激发兴趣。

  我从学习喜欢的拼图游戏入手,通过拼图,让学生惊喜的发现三张图摆放位置不同,拼出的效果就不一样,竟然能拼出三毛和一休他们喜欢的图片。

  我进行小结:“看,用了不同的图,拼出了不一样的效果,如果老师给你数字卡片,你能拼出什么呢?”

  我通过创设拼图游戏的情境,激发学生的学习兴趣,符合低年级儿童的年龄特点,抓住了“童心”,让学生在游戏中产生兴趣,在活动中找到启示。同时为新课的进行作好了铺垫。

  二、合作学习,探索新知

  活动一:摆一摆。(学生用数字卡片1、2、5排数)

  学生用屏幕出示的1、2、5三个数字,从中任选两个数字组成两位数,小组合作摆一摆,能组成哪些两位数,边摆边记录,组长把结果记录在答题卡上,比比看,哪个组找的最多,学生开始活动。小组汇报记录的结果,这时学生写出来的两位是无序的,而且会有遗漏,重复的可能性不大,但也会有。通过汇报,使学生注意到这一点。

  接着我进一步质疑:怎样才能使摆出来的两位数既不重复又不遗漏呢,你有什么好的方法吗?小组合作,用你的方法再摆一摆,边摆边记录。小组汇报,这次的汇报主要是汇报你用什么方法摆的,组成了哪些两位数。这时我使用课件,把学生汇报的结果展示在大屏幕上。再找和这个组方法同样的组说说是怎么想的。对他们的方法进行表扬和肯定。“还有不同的方法吗?”学生可能还会不同的方法。这时我在课件中预先设计了些方法,在汇报时我出示这种方法的排列过程。再让学生说一说你喜欢哪种方法。这样既鼓励方法的多样性,又给学生自由选择方法的机会。

  最后师生小结:我们在排数的时候要按照一定的顺序先固定最前面一个数,再用这个数与其他两个数分别组合在一起,这种方法既不重复又不遗漏。

  这一教学环节是通过学生合作学习,在操作、交流中研究出了排列的方法,使学生在体验中感受合作的快乐和操作中的成功,在交流中找到方法,并进行应用。

  活动二、抽奖

  抽奖活动是对前面排列方法的应用与巩固,同时也对排数提出了更高的要求,由三个数的排列到四个数的排列,对学生来说有一定难度。所以我把这个知识点放到了活动当中,让学生在游戏中体会排列的方法。

  我抓住学生好玩的特性,请他们来参加一个抽奖的活动。我出示四张数字卡片:2、5、7、8。提出要求,中奖号码就在这四张卡片中任意两张组成的两位数中,让学生猜中奖号码。然后抓住时机,让学生把所有可能中奖的号码写出来。汇报写了几个两位数,都是哪些?选择其中一组展示在屏幕上。让学生把写有所有号码的题卡扣在桌上,推选一名同学到前面抽奖。先抽出一张,做为第一个数,让学生猜中奖号码可能是什么?再抽出第二张,学生宣布中奖号码。把题卡翻过来,把抽到的号码在题卡上圈出来,用你喜欢的方法对中奖的同学表示祝贺。

  通过这个活动,让学生在合作交流的过程中经历由3个数过渡到4个数的排列,给学生留有较大的探索交流空间,这样既有利于学生的学习,又培养了学生乐于合作的习惯。

  活动三、握一握。

  承接上一活动,同学们你们真是勤于思考的孩子,我要向中奖的同学握手表示祝贺。提出疑问:我和他,我们两个人握了几次手?学生会说一次?接着我问如果每两个人握一次手,三个人握几次手呢?猜猜看?猜测过后,小组同学合作,组长做裁判,握一握。学生汇报3次。课件演示,三个小朋友握手的过程,显示次数。

  接着我提出问题:为什么三个数字能排成六个两位数,而三个人每两个人握一次手,却只握了三次呢?小组同学讨论讨论。通过讨论交流,再汇报,使学生明白两个数字交换位置变成了两个数,而握手时两个人即使换位置还是这两个人,所以就是一次。

  这一活动通过用实践活动培养学生的实践和应用意识,让学生感受到数学的乐趣,从而体现课堂的发展要按学生的思维发展进行这一理念。

  三、拓展应用

  1.小喜鹊超市

  承接上一活动,同学们的解释使我豁然开朗,为了表示感谢,老师带大家到小喜鹊超市去选一套衣服。课件出示四件衣服。

  你有几种搭配方法?学生商量后汇报。并选出自己喜欢的一套。

  2.快乐狗活动室

  让我们穿着自己搭配好的衣服到快乐狗活动室去转转。今天活动室有新项目。是什么呢?谁来读一读?指生读题:课件出示二年级三个班和三年级四个班进行踢毽子比赛。每两个班进行一场比赛,要进行多少场呢?出示排列图,学生在本上画一画连一连。

  3.有多少条路?

  出示课件。小明从家到学校有多少条路?课件显示的信息是:小明从家到学校要经过一条小河,从家到小河有两条路,从小河到学校有3条路。学生独立找到回家的路。

  通过拓展练习,让学生在活动中运用新知识,三个层次的情境安排,给学生留有充足的空间,让他们利用学过的数学知识来解决生活中的问题,来体现数学的应用价值。

  四、畅谈收获,全课小结

《数学广角》说课稿14

  一、说教材

  《数学广角——集合》是人教版新课标数学三年级上册第九单元的知识,涉及了学生在生活和学习中经常遇到的问题:求两个集合的并集或交集的元素个数。(集合是比较系统、抽象的数学思想方法,也是数学中最基本的思想。)

  本节课教材例1在学生积累了较丰富的学习生活经验的基础上借助学生熟悉的题材,向学生渗透集合的有关思想,使学生理解用直观图(集合圈)表示“重复现象”的方法,了解直观图(集合圈)各部分的意义,特别是重复部分(交集)的意义,掌握根据直观图列式计算总数(两个集合的并集)的方法。这样安排不仅可以提高学生学习的兴趣,激发学生的好奇心,而且还让学生体会到数学知识与生活的密切关联,逐渐学会从数学的角度看待身边的事物。

  二、说学情

  三年级学生从一年级开始学习数学时就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。例如在数数时,把1个人、2朵花、3枝铅笔用一条封闭的曲线圈起来表示,这样表示出的数学概念更直观、形象;而且在以后学习的平面图形之间的关系都用到了集合的思想,如把一堆图形按照一定的标准分类,这种分类思想就是集合理论的基础。但这些都只是单独的一个集合圈,学生不一定从集合的角度来思考并解决问题。

  三、说目标

  在设计本节课的教学时,以新课程理念为指导,将数学知识与学生实际生活有机结合,通过预学提示、自主探究、合作交流、操作实践等方式让学生经历数学知识生成的过程,从而达到感悟知识的目标。

  基于以上认识,本节课在把握教材意图的基础上,目标定位如下:

  1、通过预学观察图表、自主探究和合作交流等活动,让学生经历解决问题的过程,了解简单的集合知识,初步感受集合的意义,获得数学学习的体验。

  2、使学生通过理解用直观图(维恩图)表示“重复现象”的方法,学会借助直观图(维恩图)运用集合的思想方法来解决较简单的实际问题,从而感受到数学与生活之间的相互联系。

  3、通过课堂教学活动,让学生体验数学的价值,培养学生合作学习的意识和学习的兴趣,提高学生的观察能力、思考能力、创新能力、评价说理能力。

  四、说重难点

  本节课的重点是让学生感知集合的思想,并能初步运用集合的思想解决简单的实际问题;难点是对重复部分的理解。

  五、说设计

  1、把自主探究与有意义的接受学习有机结合。

  学生对于“重复的人数要减去”是有经验的,因此在充分尊重学生经验认知的基础上,放手让学生先自主探究,独立完成,再汇报交流。配合学生汇报,利用多媒体课件出示维恩图,运用讲授法引导学生认识并理解维恩图,并通过直观演示将两个集合圈合并的过程,引导学生讨论发现“集合中的元素是不能重复出现的”,体会集合元素的互异性;“集合元素的顺序可以不同”,体会集合元素的无序性。并让学生想一想说一说图中每一部分所表示的含义,尤其是“两项都参加的和参加这两项比赛的”,体会交集和并集的含义。

  2、放手学生,让学生体会与交、并有关的计算。

  学生在列式解答时,根据连线或维恩图,会列出多种方法。放手让学生尝试解决,并充分展示学生的`方法,同时给予充分肯定。让学生结合维恩图体会各个算式所表示的含义,体会求“两个集合并集的元素个数”就是要将两个集合的元素个数相加后减去其交集的元素个数。突出基本的方法,加深学生对与交、并有关计算的体会和对集合知识的理解。

  3、关注“冲突”,激发学生的探究欲望和兴趣。

  提出需要解决的问题“参加这两项比赛的共有多少人?”后,学生的不同答案有可能引发“冲突”。抓住这一“冲突”,追问“你能确定有17人吗?”、“你能证明为什么不是17人吗?”,以此激发学生探究的欲望,让学生积极主动的投入解决问题的活动中去,用个性化的思考和处理问题的方式解决问题,为他们自主构建知识的意义提供保障。

  4、培养学生收集、整理信息的意识和能力。

  本着从实践中来到实践中去的原则,课堂上通过学生生活实际介绍了用维恩图表示集合及其交、并的方法,让学生亲身感知集合的思想,体验知识生成的过程,在过程中体验集合的思想,在过程中感悟重复,并顿悟重复问题的解决方法。让学生经历问题解决的数学化过程,获得数学学习体验。

  5、培养学生思维的严谨严密性。

  数学的教学,最重要的不是数学知识的教学,而是数学思维、数学思想方法的教学。数学思想贯穿整个数学体系的始终。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。严谨性是数学学科的基本特征之一。在教学过程,我注重培养学生思维的严谨严密性,如解读韦恩图的过程中,让学生表述各个部分的意思。大圈是表示“参加跳绳人数”和“参加踢毽人数”,而去掉了都参加的部分后是“只参加跳绳人数”和“只参加踢毽人数”,多了一个字“只”,虽然只有一字之差,但是意思完全不一样。还有“既参加跳绳又参加踢毽”让学生明白这是两种活动都参加的。

  6、锻炼根据实际情况解决问题的能力。

  具体情况,具体分析。课堂最后设计的课后思考题目对学生所学知识灵活运用的能力既是锻炼又是提高。

  (四)巩固练习

  通过三个练习,分层次的练习达到巩固。

  1、基本练习:完成105页的1、2题

  ﹙1﹚理解集合圈里各部分的意义。会读集合圈中的信息,会按条件填写集合圈。完成105页的1题

  ﹙2﹚你从图上能很快地看出哪些信息?再算出语数有多少人?

  2、解决问题:先分析题意,学生独立完成。再请学生汇报,全班交流。

  (五)课堂小结

  请学生谈收获,其他学生补充。最后,教师总结全课。

  六、课堂上运用课件着重体现的数学思想方法有:

  1、课件出示小动物回家,引入课堂,使课堂教学更加高效、生动、活泼。使带有一定强制性的教学过程转变成学生高效的自学,使儿童在小组合作中体验与情感结合起来,学生的学习兴趣高涨,注意力更加集中,思维更加活跃,从而更好地掌握知识、发展技能。

  2、培养学生收集、整理信息的意识和能力。集合的抽象性是在它最终形成结论才具有的,而在结论形成过程中,必然以大量的具体内容为基础。本着从实践中来到实践中去的原则,课堂上我们让学生从生活实际中亲身感知集合的思想,并使他们亲身体验集合图的产生过程,让学生在过程中体验集合的思想,在过程中感悟重叠,并领悟重叠问题的解决方法。让学生经历问题解决的数学化过程,获得数学?学习体验。

  3、培养学生思维的严密性严谨性是数学学科的基本特征之一。

  数学的教学,最重要的不是数学知识的教学,而是数学思维,数学思想方法的教学。数学思想贯穿整个数学体系的始终。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。严谨性是数学学科的基本特征之一。如课件出示韦恩图,引导学生填写、理解的过程中,让学生表述各个部分的意思。课堂上时时注重学生严密的思维。

  另外一个体现就是:教学中要注意克服学生的思维定势。能促使学生发现问题,培养学生的质疑精神,长此以往,由质疑进而求异,突破传统观念,大胆创立新说。

  根据实际情况解决问题的能力。谢谢大家!

《数学广角》说课稿15

  三年级下册数学广角“换一换”说课稿

  一.说教材

  本节课内容是义务教育课程标准实验教科书三年级下册第109页例2的一节课,本课是利用天平的原理,使学生初步体会等量代换的数学思想方法。等量代换是指一个量用与它相等的量去代替,它是数学中一种基本的思想方法,也是代数思想方法的基础。等量代换思想用等式的性质来体现就是等式的传递性:如果a=b,b=c,那么a=c。这个数学思想方法不仅有着广泛的应用,而且是今后进一步学习数学的基础。

  二、学情分析:

  等量代换有广泛的应用,是今后进一步学习数学的基础,可以培养学生良好的逻辑思维能力。但等量代换的思想在教材中是第一次出现,也是学生第一次接触,而它又是一个非常抽象、非常难以理解的内容,三年级的学生具有一定的相关经验但比较浅显。本课设计理念上,主要是让学生通过操作、观察、思考与交流等活动,突显课堂教学的可操作性、创新性、科学性、思考性、互动性。让学生初步感受到数学思维的训练,逐步形成有序地、严密的思考问题意识,同时使他们逐步形成探索数学问题的兴趣与欲望,发现、欣赏数学的意识。

  三、说教法学法:

  本课教学以“体验等量关系”、“建构模型、形成数学思想方法”、“运用等量代换的数学思想方法”这三大版块为教学主线,体现了教师的“引”到“放”直至“创”的过程。通过“师生、生生的多元互动”的学习方式,培养学生的思维能力。教学思考贯穿课堂教学始终,注重了学生学习的有效性。

  四、说教学目标:

  (一)知识与技能

  让学生初步认识等量代换的数学思想,学会根据已知信息寻找事物间的等量关系。

  (二)过程与方法

  通过学生动手实践、观察、思考、猜想、分析等过程,从中认识到“换”是按一定规则进行的,并能找出规则解决生活中和简单问题。

  (三)情感态度价值观

  让学生初步体验代换给人们生产、生活带来的便利和现实价值,并通过教学活动增强学生的合作意识和竞争意识,使学生感受用数学的乐趣,享受成功的喜悦。

  五、说教学重难点

  利用天平或跷跷板的原理,使学生在解决实际问题的过程中初步体会等量代换的思想方法,并能解决简单的实际问题,为以后学习代数知识做准备。

  六、说媒体运用

  理解、接受并运用等量代换思想是本课教学的一个难点,通过课件的直观演示可以帮助学生更好的理解等量代换的过程,帮助学生建构数学模型,使学生形成自己的`思想并运用在解决实际问题当中。从而解决了有些孩子仅凭直觉作出判断,脱离实物或直观图就完全失去了方向的问题。

  七、说教学过程

  (一)激发兴趣,引入新课

  为了增强学生对数学的亲切感,我以同学们喜欢的动画形式引入,(动画1)播放《曹冲秤象》的课件。在学生看完这个动画后谈话,曹冲解决称象的的问题实际是应用了数学中的一种思想方法,是什么思想呢,就是我们这节课要研究的问题。

  〔“曹冲称象应用的是什么数学思想?”这一问题将学生带入到了有意义的、思维含量高的问题情境中,使学生初步感受到数学的魅力。〕

  (二)构建模型,探究新知

  1、出示例2主题图(图片1)并引导学生观察:小明、小红分别在水果摊里提出了什么数学问题?接着引导学生先弄明白第1个和第2个天平的含义:通过天平你知道了什么?能否解答小红提出的问题?〔设计意图:这样引导是为了让学生更细致地去认识、观察天平,感知、体验等量关系,使学生初步了解什么是等量,只有先了解“等”才能学习后面的“换”。为解决例2这个问题作铺垫。〕通过以下三步,突破难点,帮助学生形成数学思想:

  (1)牛刀小试----小组内动手摆一摆,并交流自己的想法,初步构建模型。(视频1、2)

  〔设计意图:正是在这样的摆一摆、换一换、算一算的数学活动中,学生感悟到“等”是“换”的必要条件。学生在亲历知识的形成过程中,初步构建了模型,感悟到等量是如何进行代换的〕(2)曲径通幽----观看课件演示过程,在头脑中建立表象。(动画2)〔设计意图:随着学生对“等量代换”问题的直观感知,隐藏在直观感知中的数学思想方法会逐渐显现出来,在这样一个“朦朦胧胧”、“似有所悟”的关键时刻,作为教师就应抓住知识的发展点,进行及时地启发与引导,直至产生顿悟。〕

  (3)拂尘见金----提炼等式,使学生形成数学思想方法。(视频3)〔设计意图:学生对“等量代换”这一问题的建模需要有一个不断渗透、循序渐进、由浅入深,逐步积累形成的过程。在这个过程中,需要我们教师做一个“过程”的加强者和引导者,去“敲打”学生的思维,让学生在一次次的“敲打”过程中,积累、感悟、直到学会应用。〕

  (三)巩固内化,拓展提升

  适当的教学高度和教学深度有利于激发学生的积极性,我对教材内容进行了合理的扩充,将书中一个例题和几个孤零零的习题进行了巧妙重组,设置了三个练习情境,把学生的思维一步步引向深入,让学生在解决问题的过程中掌握思维的方法,提升逻辑思维的能力。(1)我能行。(图片2)

  肯德基店为了庆祝六一,进行了促销活动,一个汉堡换2对鸡翅,一对鸡翅换3个圣代,两个汉堡可以换几个圣代?(学生直接抢答)让学生重点说出换的过程(动画3),老师给予适当的指导。(2)挑战自我。(图片3)

  用天平可以准确的称出物体的重量,那么,在我们身边还有一些其他方法可以比较出物体间的重量。出示:两只鸭和一只鹅在玩翘翘板左边两只鸭右边一只鹅(平衡)左边四只鸡右边两只鹅(重些)

  1只鸡和1只鸭,谁重些?

  〔这是等量代换思想的一种变式练习。直接比较1只鸡和1只鸭谁重比较困难,引导学生可以转化为2只鸡和2只鸭,或4只鸡和4只鸭比较。〕

  (3)题目大变脸。(图片4)○+□=91△+□=63○+△=46○=?△=?□=?

  〔这道题属于课后题,有一定的难度,直接用等量代换的方法来解决很困难,可以先把三个等式的左边相加,右边相加,可得到2X(○+□+△)=200所以○+□+△=100,然后再利用等量代换,依次求出○、□、△的值。〕

  (四)小结回顾,突出重点

  同学们,这节课我们学了哪些知识?你们对自己今天的收获满意吗?

  (五)布置作业,课堂延伸

  数学来源于生活而又应用于生活,在古代,人们不是用钱来买物品的,而是用物品来换物品,你能帮帮这个老爷爷吗?(图片5)用4个番薯可以换2棵大白菜。用8棵大白菜可以换2斤米。用2只鸡可以换10斤米。

  老爷爷:我今天带了一只鸡,可以换些什么呢?(图片6)

  八、说教学反思

  等量代换的理论是比较系统、抽象的数学思想方法,需要形象直观的演示来帮助学生构建模型,电化教学手段的运用给数学教学灌输了新的动力,在本课教学中,电化媒体为学生们提供了形象的直观演示,在学生形成表象的过程中起到了使学生顿悟的作用。学生不仅轻松地的学会了数学知识,还有效地突出重点,突破难点,从而很好地实现数学课堂与信息技术的整合。