数学学习计划(通用15篇)
光阴迅速,一眨眼就过去了,我们的工作又将在忙碌中充实着,在喜悦中收获着,请一起努力,写一份计划吧。什么样的计划才是好的计划呢?以下是小编精心整理的数学学习计划,欢迎大家借鉴与参考,希望对大家有所帮助。

数学学习计划1
一、时间安排
1、每天有四个1小时的保障
每天保障做一小时的寒假作业;
每天保障一小时的无负担课外阅读;
每天保障一小时的英语自学;
每天保障一小时的户外活动或运动。
2、安排与非安排
在没有特殊的情况下,每天都必须完成以上的安排;
每天的安排在得到保障的前提下,可灵活自由安排顺序;
如果因外出旅游、回乡下度假等意外安排,可临时暂停执行;
可以偶尔睡懒觉,但绝对不可以影响当日安排的实施。
二、学习安排
1、不参加补习班,不请家教,相关课程的学习坚持自己独立完成。
2、语文课程安排
寒假上半期完成暑假作业,寒假下半期,即开学前检查、改正,查漏补缺;
把自己的藏书系统再读一遍,重点读历史、百科知识大全、漫画、中外名著导读等丛书;
假期可以自己买三本自己喜欢的任何书籍阅读;
把以前比较薄弱的知识点的阅读题的规范回答、错别字系统复习。
3、数学课程安排
假期完成数学科目的自学,基本掌握其要领,有选择性挑选典型题目做。
自己注意计算细心化的纠正。
4、英语课程安排
英语学习能力和成绩一般,要重点加强学习兴趣和能力的培养;
把三年级和四年级的学校课本系统复习一遍,每天坚持听剑桥英语的磁带,时间不限;
假期把以前记得的英语单词都记在小本子上,分类汇总;
若有兴趣、有机会,可以把语音和音标接触、巩固一下,尽量保证发音标准。
三、活动安排
1、随父母至少于寒假在省内出去旅游一次,并争取省外旅游去一次;
2、至少去乡下亲戚家走访2次,体验乡下的自然生活;
3、每天保证要有一小时的户外活动或运动,散步、溜冰、找小朋友玩等,要注意安全;
4、每两天至少帮家里做一件家务事(10分钟以上),洗衣服、择菜、简单做饭、拖地擦窗户等;
5、一个人尝试独立在家呆1—2天;邀请同学或者小朋友在家玩若干次,并独立招待;
6、每周玩电脑2小时左右,重点加强打字能力的提高;
7、尝试掌管家里经济和家务安排1—2天,当1—2天家长;
8、其他:根据具体情况,灵活安排,但一定保证活动的意义。
每天日程安排:
1。帮老妈做一些家务活,分担事务;
2。做1—2次有意义的`公益劳动或者志愿者活动;
3。学会一项家务技术或其他的小技术,比如做饭、拆洗和安装窗帘;
4。改掉一个坏毛病、缺点、不良习惯;
5。读一部好的书,并写出读后感;
6。根据身边的事物写一些文章,并选出一篇自己认为好的文章,分享给同学和老师欣赏和评价,锻炼自己的写作能力;
7。看一部好的电影或者电视剧,试着写出观后感;
8。学会唱一首好歌;
9。试着尝试做一些自己曾经不敢做的事;
10。完成假期的作业,并努力做到最好;
11。要注意完成学校布置的所有作业,不要漏做或偷工减料,字体要工整;
12。一个星期至少一次到图书馆看小学生课外读物,或者自己家里有课外书的把它看完。最好看一些第三,每天要做适量的运动,不要因为天气寒冷躲
13。天天看电视新闻报道,知多点国家大事,知多点交通防范安全;
14。多帮老妈分担力所能及的家务活,多向老妈学习做饭炒菜等的生存技能,在寒假培养一个动手能力强,独立自主的自己。
数学学习计划2
学生主要是以预习初一下学期内容为主,以便对下个学期进一步的学习数学知识有一个更明确的把握,了解数学学习的连贯之处。通常初一学生刚刚从小学进入初中,还不太适应初中的学习方式。小学阶段,学生主要以模仿式学习为主,而进入中学后则完全不一样,要求学生必须要学会自己独立学习,独立思考。
初一学生往往不善于课前预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出什么问题和疑点。
那到底该如何预习呢?预习的步骤有哪些呢?
一粗读,先粗略课文浏览教材的有关内容,大致了解相关内容,掌握本书知识的.基本框架,同时了解新课的重点和难点。
二细读,对重要概念、公式、法则、定理反复阅读、仔细体会、认真思考,注意知识的发展形成过程,对难以理解的概念作出标记,以便新学期上课时带着问题听课效率更高。通过课前预习能够使学生知道那些地方容易,哪些地方难,会使今后的听课变得更有针对性,注意力更集中,从而提高了听课的效率。大量的事实证明,养成良好的预习习惯,能使孩子从被动学习转为主动学习,同时能逐步培养孩子的自学能力。有了自学能力,就好比掌握了打开知识宝库的钥匙,就能源源不断的获取新知识,汲取新的营养。
细心地挖掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:
一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在单项式的概念(数字和字母积的代数式是单项式)中,很多同学忽略了“单个字母或数字也是单项式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解 题联系起来。
三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
数学学习计划3
——良好的开始是成功的一半
有一种普遍现象:许多初中数学学习成绩的佼佼者,进入高中后,不能适应高中的数学学习,成绩下降,笔者认为产生这一现象有两个方面的原因:一方面学生升入高中后(一般都是各县市或乡镇中学升入重点高中),发现周围都是优秀的学生,回想自己曾经是老师心中的优秀生,是同学眼中的榜样,但经过数次考试后发现优势不再,而且在其它的综合素质方面也不能崭露头角,心理出现了巨大的落差,进而消极,如果不及时调整自己的心态,容易产生自暴自弃的想法和行为,严重者还会产生精神方面的疾病,此种例子比比皆是。另一方面教学内容的加深,思维要求的提高,课堂知识容量的增加,教师讲解习题的时间减少,学生不能适应这种变化,此外初中的学习方法已不能适应高中的数学学习,教师也不再像初中那样紧盯着学生学习,更多的在于自学,针对这种现象,笔者认为有必要向高一新生讲一下如何应对高中数学学习的经验和建议。
一 、初中与高中数学的差异
高中数学与初中数学一个明显的差异是知识内容“量”的急剧增加,单位时间内接受知识信息的量与初中相比增加了许多,消化和练习的时间相应的减少了,另外,初中数学是以形象、通俗的语言方式进行表达,而广州数学则触及的是抽象的数学语言以及抽象的思维形式,各种抽象的概念性语言对思维能力提出更高的要求,此外高中数学更加强调分析过程、思想方法的贯穿及运用、思维形式的训练及能力素质的培养。
二 、学生存在的不良学习习惯
⑴思想上的松懈
有些同学把初中的那一套学习思想移植到高中来,简单的认为自己在初一、初二时并没有用功学习,只是在初三临近中考的前两三个月发奋学习就轻易的考上了高中,因而认为读高中也不过如此,高一、高二用不着那么用功,只要等到高三时再努力学习,也一样考上一所理想的大学,如果一开始抱有这种思想,等到意识到此问题的严重性,恐怕为时已晚,回天乏术,殊不知“万丈高楼平地起”,没有高一、高二的基础,高考便是空谈,到头来既是白日做梦一场空,切记!切记!!
⑵靠记忆学习数学
初中教师在讲课时,对知识点讲授非常细致,由于时间充足,内容少,学生练习多,熟能生巧,必然会取得好成绩。但观众教师在讲课时一节课会讲很多概念、例题、解题方法,时间比较紧,如果上课不集中注意力去理解课堂内容,那么课后作业就不能顺利完成,久而久之必然会影响成绩。
⑶依赖教师,忽视自学习惯
许多学生进入高中后,依旧像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权,表现在不做课堂笔记,不做纠错笔记,不做总结,不制定学习计划,坐等上课,课前不预习,上课晕头转向,实在不行就依赖家庭教师,这些做法都不科学。
⑷在头脑中没有形成数学知识体系,只注重孤立的知识点
高中数学共有140多个知识点,知识的形成过程中还蕴含着大量的数学思想方法和解题技巧,知识点之间有着较强的联系,这些往往被学生忽略。学到哪一节就看哪一节的内容,不知道章与章、节与节之间的联系,只注重表象特征,不善于深入挖掘,使得学到的知识是零散的、片面的。
⑸只注重结论与记忆,不注重知识的形成过程
高中数学概念课有着丰富的内容,学生对这些课往往轻视,对一些概念的发生、发展过程缺乏深刻的理解,只停留在表象的概括水平上和记忆层面,不能从内涵上去把握概念。比如学生在学到数列这一章节时,都会背诵数列的公式,但一碰到数列题就无从下手,原因是当时学习数列概念时没有理解概念形成过程中产生的数学思想方法,不能将这种思想方法迁移到具体问题钟来。
⑹没有形成自我反思、自我总结的习惯
学生只满足于上课听懂老师讲授的内容,课后不进行认真消化和总结归纳,没有形成自我反思、自我总结的习惯,有很多学生认为做反思笔记没有用,其实不然,如果你想上一个重本院校,不反思、不总结,只要你足够聪明,这也是有可能的,如果你想上一所好大学,不反思、不总结绝无可能(本书中专门讲解怎样做专题笔记)。
三、掌握科学的数学学习方法是学好数学的关键
高中生仅仅想学时不够的,必须掌握科学的学习方法,才能提高学习效率,才能做学习的主人。但学无定法,每个学生都有自身的优缺点,学生应根据自己的特点及学习情况,对各种学习方法比较和积累,最终形成自己的学习方法,以下是一些共性的学习方法作简单介绍。
(一)养成课前预习的习惯
⒈预习的意义
预习是在教师讲课之前独立地自主学习新课的内容,做到初步理解并为上课做好知识准备和心理准备(一般学校都会以学案的形式给出)。预习的意义有以下三点①培养良好的学习习惯,学会自主学习,掌握自学方法,为众生学习打下基础②预习有助于了解下一节课的主要内容和重难点,为上课扫除部分知识障碍,建立新旧知识之间的联系,有利于知识的系统化③有助于提高听课效率,对预习中不懂的问题,在老师讲解时,可以做到目标明确,态度积极,注意力集中,容易将不懂的题搞懂,这样可以挤出时间记录书本上没有的知识,认真分析,从而提高学习效率。
2.预习的基本步骤
边读边思:数学课本分为引言、数学概念、规律(包括法则、定理、推理、性质、推理等)、图形、例题、习题,引言一般是以学生已有的经验和熟悉的生活常识为基础展开,内容熟悉而具体,使学生对所学的内容有一个感性的认识,新教材改革后数学概念和定理一般都以观察、思考、探究等数学活动引导学生们发现问题、提出问题,通过亲生实践、主动思考,从具体到抽象、从特殊到一般的活动来理解和掌握数学的基础知识,有很强的可操作性,这是新课改后教材最大的变化,在自学例题时,要做到:分清解题步骤,找出解题关键;弄清各解题步骤的关键,养成每步都要问为什么的习惯,尽可能的'运用上面的知识;注意有些例题配有图形,即便没有也要尽可能的再通过图形角度理解例题,分析例题的解题规范和格式,再看看例题再有没有其他的解法,最后按例题格式精做几道习题。
边划边想:一般情况下学生自学的过程中都能基本把握一节课内容的重点,在自学的过程中划出本节的重点,这样做有助于学生对知识的掌握,对有疑问的地方用“?”标记,在第二天教师讲解的过程中扫除疑问,提高听课效率。
边想边写:新教材每页都有大片的空白,在自学和老师讲解的过程中将自己的看法和体会记在空白处,可以记对概念的解读,对解法的思考,对易错点的分析,对例题的条件和结论的变式等,这样总有利于学生全面把握本节内容,有些学校会配有自主研发的学案,降低了预习的难度,也是一种很好的预习方式。
(二)专心听讲,积极提出自己的问题,认真做好笔记
“学然后知不足”,听课时理解和掌握基本知识、基本技能和基本方法的关键环节,听课是要听教师是如何突破难点、重点和关键点的,听自己在预习过程中不能理解的内容,听教师对一类问题或习题是如何分析和总结。有些同学喜欢将教师的板书一字不拉的记下来,大可不必这样做,课堂笔记是记老师补充的一些重要的知识点、结论和一些经典的解法和解题技巧;只要记住解题过程,课余时间慢慢整理,一定要处理好听课和记笔记的矛盾,不要顾此失彼。
新教改后对教师的教法和学生的学法提出了更高的要求,强调学生的主体作用,教师在课堂上要积极鼓励学生参与进来,课堂上有一些问题不能依赖教师讲解,而是让每个学生都积极思考,展示自己的想法,探究更多的想法和解法,提出想法有时比解决一个问题更加重要,因为它带来的是思想的变革(笔者认为不能抛弃传统的讲授法,应内容而定)。
(三)认真完成作业,做好复习总结
认真完成作业时独立思考,分析问题,解决问题,进一步加深对所学新知识的理解和掌握新技巧的必要过程,但现实并不乐观,绝大多数学生都有抄作业的习惯,更有甚者几乎全部抄写,当然有一部分因素是作业布置不科学造成的,因此作业也是对学生一直、毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”,另外从思想上要重视作业,不把作业当成负担,作业就是工作。
及时复习,系统小结,时高效学习的另一个重要环节(本书专门讲解了如何做数学学习笔记),通过反复阅读教材,多方面查阅有关资料,强化对基本概念、知识体系的理解与记忆,将所学的新知识与与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记本上,对所学的心知识由懂到会,在复习总结时,要以教材为依据,在系统复习的基础上,参照笔记与资料,通过分析、综合、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。
(四)关注错题
有一种简单化的认识,以为错误都是知识不过关造成的,其实,解题错误的类型不只一个,在知识过关的情况下也会出现差错.既然成功的解题有知识因素,能力因素,经验因素和情感因素,那么不成功或失败的解题也会与这些因素相关,我们总结为:知识性错误,逻辑性错误,策略性错误,心理性错误.
知识性错误
主要指由于数学知识上的缺陷所造成的错误.如误解题意、概念不清、记错法则、用错定理,方法失误等.核心是所涉及的内容是否符合数学事实.例如学生在学到三角函数的公式时常常是把公式记混而出现错误.
逻辑性错误
逻辑性错误主要指由于违反逻辑规则所产生的推理上或论证上的错误.如虚假论据,不能推出,偷换概念,循环论证等,常常表现为四种命题的混淆,充要条件的错乱,反证法反设不真等.核心是所进行的推理论证是否符合逻辑规则.例如学生在学到数学归纳法这章内容时常常认为从n=k假设推证n=k+1时命题成立是显然成立的,没有用到假设就认为原命题成立,这样就违背了数学归纳法证明数学命题的逻辑规则.
知识性错误与逻辑性错误既有联系又有区别.
(1)知识性错误与逻辑性错误有联系.
由于数学知识与逻辑规则常常是相依共存的,从广义上说,我们也不能把逻辑知识排除在数学知识之外,所以,逻辑性错误与知识性错误常是同时存在的,从哪个角度进行分析取决于比重的大小与教学的需要.在上面的例子中我们已经看到,当我们说它有知识性错误时并不排除它也有逻辑性错误;同样,当我们说它有逻辑性错误时也不排除它还有知识性错误.
(2)知识性错误与逻辑性错误又有区别.
知识性错误主要指涉及的命题是否符合事实(是否符合定义、法则、定理等),核心是命题的真假性;逻辑性错误主要指所进行的推理论证是否符合逻辑规则,核心是推理论证的有效性.虽然,数学命题的事实真假性与推理论证的逻辑有效性是有联系的,但是数学毕竟不是逻辑,数学毕竟比逻辑大得多,我们依然应该在知识盲点的基本位置和主要趋势上区分知识性错误与逻辑性错误.
策略性错误
这主要指由于解题方向上的偏差,造成思维受阻或解题长度过大.对于考试而言,即使做对了,若费时费事,也会造成潜在丢份或隐含失分,存在策略性错误.在解题探求中,思维受阻或思路曲折是不可避免的,因而,探索阶段的策略性错误是很难完全消除的.
例如:不等式x2+ax+1>0在x[1,2]上恒成立,求实数a的取值范围,大多数同学
都会想到通过构造二次函数,利用二次函数动轴定区间的办法求解该问题,过程比较繁琐,如果采用分离常数法求解,问题便迎刃而解,过程简单明确.
心理性错误
这主要指解题主体虽然具备了解决问题的必要知识与技能,但由于某些心理原因而产生的解题错误.如顺序心理、滞留心理、潜在假设,以及看错题、抄错题、书写丢三落四等.高考阅卷启示我们,许多中上水平考生常在“会而不对、对而不全”上拉开录取与落榜的距离.这是一个“老大难”问题:
(1)会而不对.有的考生,拿到题目不是束手无策,而是在正确的思路上,或考虑不周、或推理不严、或书写不准,最后答案是错的,这叫“会而不对”.
(2)对而不全.另一些考生,思路大体正确,最终结论也出来了,但丢三落四,或缺欠重大步骤,中间某一逻辑点过不去;或遗漏某一特殊情况、讨论不够完备;或潜在假设、或以偏概全,这叫“对而不全”.一开始能意识到纠错的重要性对初上高中的学生至关重要.
(五)主动学习,善于对比和联想
在课堂中,学生应该主动地跟随老师的思路,主动地动脑、动手、动口,积极参与课堂教学,培养各方面能力。把由主要感知事物的外部特征的感性认识向对知识的分析、综合理解的理性认知过渡,把较多的具体形象思维向抽象的逻辑思维过渡,培养思维的主动性、独立性与灵活性,提高思维能力。在教师的指导下,通过自己的观察、实验、探索,在与他人的合作中交流自己得到的结论,在研究性学习过程中培养自己的创新精神、合作精神和实践能力。
学生在整个的学习过程中药善于联想,学会举一反三、触类旁通。比如平面几何知识向空间几何联想,数学语言与几何图形的联想,一般问题与特殊问题的联想。利用对比可以加深对知识的理解和掌握。如将指数函数与对数函数的对比,可知它们的图像位置不同,但对底数的讨论是一致的,这样可以建立合理的知识结构,系统全面地理解知识。
学习数学一定要在三个字上下功夫:“精、透、活”,只看书不做题不行,只埋头题海战术不总结积累不行。对课本知识既能钻进去,又能跳出来,结合自身的特点,寻找最佳的学习方法。方法因人而异,但学习的四环节(预习、上课、作业、复习)、一步骤(学习笔记)是不能少的。
对于一名普通的数学教育工作者,超越知识上和认识上单纯的和狭隘的思维模式,放远眼光,拓宽视野,尽可能促进学生的全面发展,是它毕生追求的信念。
数学学习计划4
大家知道,凡成绩优秀的同学,他们既是过程的决策者,又是过程的管理者和执行者,他们的学习过程总是有条不紊,亦张亦弛。而学习困难的同学,要么整天无所事事,要么手慌脚乱,碰碰这样,拿拿那样,心神不定,恍惚焦虑。怎样制定好计划呢?下面以数学学科为例,谈谈计划的类型以及制定计划的注意事项。
一、宏观计划树立目标
树立远大理想并非空话,俗话说:“求高得中,求中得低。”一个人有宏伟目标,一定会为实现这个目标而勤奋努力。因为努力,必然丰富人生的知识、能力和精神积沉。为建立人生大厦打下坚实的基矗
一个人有了理想,学习就会干劲倍增;一个人有了理想,人生就乐观向上;一个人有了理想,就信心十足;一个人有了理想,就毅力无穷。
没有人生计划的人,就会显得碌碌无为,精神上显得未老先衰,做事情得过且过,经常抱怨,甚至时常搞点恶作剧,寻求一时精神刺激,因为没有学习的源动力,所以疲于应付,天长日久就成为落伍者而心安理得。
我们走访了部分优秀的学生,他们有的坦然理想,雄心勃勃;有的虽不善言表,但胸怀大志。总之他们都有目标在激励!希望还没有人生目标或目标不明的同学,赶快根据自己的兴趣爱好和能力特点确定人生目标,让人生旅途有盏明灯。
二、中期计划条块分明
中期计划也就是阶段性计划。举个例子吧,我国的经济发展,按照时间的顺序,设计为一个个五年规划。在每个五年计划中,明确提出经济建设的任务,需要达到的目标,所要采取的措施等等。这样,我们就思路清晰,抓住重点,统筹安排,稳步前进。
作为高中学生,为了制定好学习数学的阶段计划,可以把每学年作为一个阶段进行制定。
高一年级我们要脚踏实地的完成课本知识的学习,发展相应的数学能力,达到一定的考核目的。完成与教材配套的教学参考书一套,并且钻研一至两本数学扩展书籍。每学期至少参加一次社会实践活动,并将获得的数据进行处理,建立数学模型,尝试解决,完成实践报告。还可以写出数学学习的阶段性学习小结,也可以试着撰写数学小论文等。这样就能夯实基础,发展能力,学会学习,促进创新。
高二年级应该基本完成高中数学知识的学习任务,提出考核目标。利用两大假期对知识和方法进行梳理,形成网络。找出学习的薄弱环节,并尽早查漏补缺。在高二学年中,要对某些重要数学问题进行专题学习,展开研究,力争突破。注重学法总结,保证学习高质高效;注意数学思想方法的钻研,用辩证的思想指导我们的数学学习,为高三的综合复习打下坚实的知识、方法和思想基矗
高三年级是高考的综合复习阶段。时间紧,任务重,压力大。计划显得更为重要。必须做到:研究考纲,明确要求;重视课本,夯实双基;梳理知识,形成网络;关注生活,学会应用;错题建档,查漏补缺;抽象概括,发展能力;挑战新境,提升学法;引申变化,探究创新;重视考试,提高考技;心理调适,决胜高考。
三、短期计划切实可行
短期计划一般是指周计划,学习者可以非常具体的制定自己的时间安排,他是操作性很强的计划。就是一周内阅读什么参考书,完成什么作业,重点研讨哪个章节的内容,完成那个章节的错题整理,归纳梳理那部分知识和方法等,一一例举清楚,定好完成时间,一旦计划定好后,严格执行,不找借口,保质保量完成。
短期计划,要分不同的时段有所侧重,不要千篇一律。例如在放假时要劳逸结合,注意查漏补缺,安排好实践活动,做好调查研究工作;考试前的一周要安排知识梳理,归纳总结,查阅笔记,考前模拟等;考试后的一周要进行经验总结,教训反思,薄弱知识和方法的补救,学习方法的调整等;学期中途的一般时间段里,应有条不紊安排知识学习,方法训练,做好自学、互学,做好感兴趣的专题研究,或每隔一段时间写一篇数学小品文章等。以上更要求我们在制定计划时,考虑到相应时间的重点任务,安排时注意轻重缓急,同时也要考虑到一些突击性的任务的安排。
短期计划要克服一些不妥的`安排。如,凭兴趣偏科安排,导致短项学科被忽视,形成恶性循环。还有为了快速提高成绩,急功近利,时间安排太紧,执行起来过度疲劳,效益降低,影响学习情绪和身体健康,应保证张弛有度,应对自如。
四、及时计划保证落实
即时计划一般指日计划,他是将短期计划进行适当分解后,落实到具体每天的任务,以及每天的即时任务构成的计划,他是非常具体的,具有可操作性和可执行性,是最现实的。
制定日计划要服从老师的教学进度与要求。把与教学进度同步的任务优先安排,并保证完成,如果新授的内容还不清楚的情况下去做其他的事情,会得不偿失,事倍功半。如果新学的内容已经得心应手,学有余力,也可以适当安排自主学习的内容。
制定日计划要学会平衡。有的同学学习被动,老师抓得紧就多投入,老师抓的松些就少投入,甚至不闻不问。殊不知,数学一天不练习,就会影响思维速度,拿到题目就会反应慢,上手迟缓且容易错,必须学会自我调节,做到拳不离手,曲不离口,“数学天天见”。
完成日计划要不折不扣。一旦计划定好以后,必须坚决执行,保证完成。不能找种种借口拖延计划的完成,必须今日事今日毕。任务不能积累,因为明天又有新的任务在等待着你。每天10道题可以克服困难,完成任务。如果几天积累到一起,就是几十道题,似乎没有办法完成了,有时就会横下一条心——干脆不做!丧失了信心和斗志。
学好数学,计划先行,希望大家定好计划,坚持不懈,养成良好的学习习惯,取得数学学习的成功!
数学学习计划5
三年级的奥数学习是小学奥数最重要的基础阶段,只有牢固掌握了三年级奥数最基本的知识技巧,才能有效的促进今后的数学学习。三年级是学习奥数至关重要的时期,三年级也是开拓思维的时间。孩子已经掌握了基本的计算能力,逻辑思维能力等,对图形也有一定的认识。
从三年级起,大量的奥数专题便开始有所接触,因此,在专题的学习初期一定要打下良好的基础,好多五六年级专题知识学习比较差的学生正是因为三四年级基础知识没有学好的缘故。
三年级不可小视——小升初的序幕开始慢慢拉开!它是考证的前奏、能力培养的起点、重点校培训班的开始,从三年级开始各个重点校开始通过培训班的形式筛选精英,好多孩子就会选择一些好的培训学校像新东方优能中学,提前进行培养,并且为考进重点校做准备。
1、 打好计算基础
三年级奥数课本系统的介绍了四则运算及其巧算,关于数的计算是比较枯燥的内容,但它同时也是学好奥数的基础,是历次竞赛或选拔比赛中都必不可少的组成部分。
就我校各位老师教学经验表明,在二、三年级打下良好运算基础的同学,一方面使得学生今后的数学学习更加轻松,另一方面,在高年级竞赛或选拔中往往会有相当大的优势。
2、重视应用题
从三年级起,奥数课本中介绍了大量的奥数专题知识,尤其是应用题部分,是所有年级所有竞赛考试中必考的重点知识。学生一定要在各个应用题专题学习的初期打下良好的基础。
现在许多五六年级同学奥数水平提高非常困难,就是因为他们三年级的奥数专题知识掌握的不牢靠。
3、掌握正确方法
在学习计算的基础上,三年级逐步引入了基本应用题,简单图形问题等奥数知识,面对突然增大的`奥数信息量,学生可以有意识的培养自己复习。
总结等良好的学习习惯;同时,三年级是学生培养自己的奥数学习方法的最好时间。在三年级接触学习大量奥数知识的前提下,有意识地培养自己的学习方法对今后的奥数学习有非常重要的帮助。
数学学习计划6
要学好数学,要把握好以下几要点,对于数学的学习成绩的提高,自学能力的养成肯定 有促进的。计划地去学习,有目标才动力去学习。
(一)制定合理学习计划,及时检查落实。
1.制定符合自己的实际情况的学习计划。
2、要有明确的学习目标。
通过一个阶段的学习,要达到什么水平,掌握那些知识等,这 些都是在制定学习计划前应该非常明确。
3、长期目标和短期安排要相互结合好。应先制定长期计划,据此确定短期学习安排,来 促使长期学习计划的实现。学期计划,半期计划,月计划,周计划。
4、 要合理安排计划。 计划不能太古板, 可根据执行过程中出现的新情况及时做适当调整。
5、措施落实要有力。可附带制定计划落实情况的自我检查表,以便监督自己如期完成学 习目标。
(二)做好课前预习,提高听课效率。
通过预习,了解要学习的课程的主要内容和重、难点,预习的任务是通过初步阅读,先 理解感知新课的内容(如概念、定义、公式、论证方法等) ,为顺利听懂新课扫除障碍。
1、预习的最佳时间是晚上的 8:00 到 9:00 这一段时间,单科的预习的时间一般控制 在 15 分钟到 30 分钟左右。
2、课前预习:先看书做到:一、粗读,先粗略浏览教材的有关内容,了解本节知识的 概貌也就是大体内容。二、细读,对重要概念、公式、 法则、定理反复阅读、体会、思考, 注意该知识的形成过程,了解课程的内容的重、难点,新旧知识的联系及新知识在学科体系 中的地位与意义,对难以理解的概念作出记号,以便带着疑问去听课,而后再做练习,通过 练习来检查自己的`预习时掌握的情况,最后再带着自己不懂的问题去听课。
(三)听好每一节课,解决疑点,吸纳新知。
耳到:就是专心听讲,听老师如何讲授,如何分析问题,如何归纳总结,另外,还要认 真听同学们的答问,看它是否对自己有所启发。老师对一些重点难点会作出某些语言、强调 的语气, 听老师对每节课的学习要求; 听知识引人及知识形成过程; 听懂重点、 难点剖析 (尤 其是预习中的疑点) ;听例题解法的思路和数学思想方法的体现;听好每节课的小结。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作, 接受老师某种动作的提示、以及所要表达的思想。
心到:集中注意力,避免走神,学习目标要明确,增强自己学习自觉性。课堂上用心思 考,跟上老师的教学思路,领会、分析老师是如何抓住重点,解决疑难。老师在讲例题时, 在脑海中跟着老师,每一步都得自己想通。多思、勤思,随听随思;深思,即追根溯源地思 考,大胆的提出问题;善思,由听和观察去联想、猜想、归纳;树立批判意识,学会反思。
口到:就是在老师的指导下,主动回答问题或参加讨论,也可避免走神。同时有利于知 识的记忆。
手到:记笔记服从听讲,要掌握记录时机,就是在听、看、想、的基础上划出课文的重 点,记下讲课的要点、疑问、记解题思路和方法以及自己的感受或有创新思维的见解、课前 疑点的答、记小结、记课后思考题的分析。 笔记要有重点。记录形式多种多样可以在书上或笔记本上划线(直线、曲线) 、圈点、作标 记、使用不同颜色的笔(如红色就比较显眼) 、记录的格式不同、书写的字体不同,这些都 是记笔记的好方法。
(四)听好每一节课,解决疑点,吸纳新知。
耳到:就是专心听讲,听老师如何讲授,如何分析问题,如何归纳总结,另外,还要认 真听同学们的答问,看它是否对自己有所启发。老师对一些重点难点会作出某些语言、强调 的语气, 听老师对每节课的学习要求; 听知识引人及知识形成过程; 听懂重点、 难点剖析 (尤 其是预习中的疑点) ;听例题解法的思路和数学思想方法的体现;听好每节课的小结。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作, 接受老师某种动作的提示、以及所要表达的思想。
心到:集中注意力,避免走神,学习目标要明确,增强自己学习自觉性。课堂上用心思 考,跟上老师的教学思路,领会、分析老师是如何抓住重点,解决疑难。老师在讲例题时, 在脑海中跟着老师,每一步都得自己想通。多思、勤思,随听随思;深思,即追根溯源地思 考,大胆的提出问题;善思,由听和观察去联想、猜想、归纳;树立批判意识,学会反思。
口到:就是在老师的指导下,主动回答问题或参加讨论,也可避免走神。同时有利于知 识的记忆。
手到:记笔记服从听讲,要掌握记录时机,就是在听、看、想、的基础上划出课文的重 点,记下讲课的要点、疑问、记解题思路和方法以及自己的感受或有创新思维的见解、课前 疑点的答、记小结、记课后思考题的分析。 笔记要有重点。记录形式多种多样可以在书上或笔记本上划线(直线、曲线) 、圈点、作标 记、使用不同颜色的笔(如红色就比较显眼) 、记录的格式不同、书写的字体不同,这些都 是记笔记的好方法。
(五)做好小结或总结,提升对知识的领悟。
在进行单元小结或学期总结时,做到:
一看:看书、看笔记、看习题。通过看,回忆、熟悉所学内容;
二列:列出相关的知识点的框架,标出重点、难点,列出各知识点之间的关系;
三做:有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发 现问题、解决问题。
最后归纳出体现所学知识的各种题型及解题方法(倍速在章末有归纳) 。学会总结是数学学 习的最高层次。平时放学回家,坚持复习当天所学的内容,加深印象。并做相应的练习题以 巩固上课所学的知识。
对所学知识系统地小结,具体如下:小结的频率:最好就是每周一次,将本周所学的知识进 行系统归纳。小结的内容:可以把识记知识(如概念、公式等)系统化,也可以对题型作归 纳,并附上自己的解题心得和注意事项等。当然可以参考章末小结。
(六)做练习题强化、巩固新的知识结构。
复习中要适当看点题、做点题。选的题要围绕复习的中心来选。在解题前,要先回忆 一下过去做过的有关习题的解题思路,在这基础上再做题。
(七)合理安排学习时间
要注意劳逸结合, 这也是保证时间利用效率的一个重要方面, 只有会休息的人才会工作。
新学期数学学习计划
计划一:新学期数学学习计划
要学习好,首先要制定一个切实可行的学习计划,用以指导自己的学习。古人说:“凡事预则立,不预则废。”因为有计划就不会打乱仗,就可以合理安排时间,恰当分配精力。
具体计划
1、学习的目标明确,实现目标也有保证。
学习计划就是规定在什么时候采取什么方法步骤达到什么学习目标。短时间内达到一个小目标。长时间达到一个大目标。在长短计划指导下,使学习一步步地由小目标走向大目标
2、恰当安排各项学习任务,使学习有秩序地进行,有了计划可以把自己的学习管理好。
到一定时候对照计划检查总结一下自己的学习,看看有什么优点和缺点,优点发扬,缺点克服,使学习不断进步。
3、对培养良好的学习习惯大有帮助。
有了计划,也有利于锻炼克服困难、不怕失败的精神,无论碰到什么困难挫折也要坚持完成计划,达到规定的学习目标。
4、提高计划观念和计划能力,使自己成为能够有条理地安排学习,生活、工作的人。
这种计划观念和计划能力,学生都应该学习和具备,这对一生都有好处。
在进行时间安排时,还要注意以下两点:
1、要突出重点 也就是说,要根据地自我分析中提出的学习标点或比较薄弱的学科在时间上给予重点保证。
2、要有机动时间,计划不要排太满太紧,贪心的计划是难以做到的。
计划二:新学期数学学习计划
新一学期又到了,上学期虽然没什么好成绩,数学93,语文94.5,但也评到一个三好学生,我没什么优点,只有老实,诚实。
然而缺点一大堆,如:不爱看书,不认真听讲,胆小怕事,爱睡觉……,就是因为这些,我才会成绩下降。我非常害怕我会被父母责骂,被朋友无视我的存在。
所以我一定要在六年级阶段拼搏,我会努力地请父母支持我!我的计划如下:
1、老师上课认真听。
2、课堂作业按时按刻去完成。
3、家庭作业要认真,不忘记。
4、不懂问题下课问。
5、计算题要认真仔细。
6、作业字迹要工整。
7、数学书要先预习,上课听的更懂。
8、数学争取好成绩。
9、配合老师要机急。
10、作业不会勤思考,实在不行问老师。
做到以上这十点,成绩优先一定行!
我一定努力学习,新学期加油!
数学学习计划
新的学期即将到来,为了使下学期的学习成绩进步、各科成绩优异、不偏科,在此做新学期的打算,
一、做好预习。预习是学好各科的第一个环节,所以预习应做到:
1、粗读教材,找出这节与哪些旧知识有联系,并复习这些知识;
2、列写出这节的内容提要;
3、找出这节的重点与难点;
4、找出课堂上应解决的重点问题。
二、听课。学习每门功课,一个很重要的环节就是要听好课,听课应做到:1、要有明确的学习目的;2、听课要特别注重“理解”。
三、做课堂笔记。做笔记对复习、作业有好处,做课堂笔记应:1、笔记要简明扼要;2、课堂上做好笔记后,还要学会课后及时整理笔记。
四、做作业。
1、做作业之前,必须对当天所学的知识认真复习,理解其确切涵义,明确起适用条件,弄清运用其解题的步骤;
2、认真审题,弄清题设条件和做题要求;
3、明确解题思路,确定解题方法步骤;
4、认真仔细做题,不可马虎从事,做完后还要认真检查;
5、及时总结经验教训,积累解题技巧,提高解题能力;
6、遇到不会做的题,不要急于问老师,更不能抄袭别人的作业,要在复习功课的基础上,要通过层层分析,步步推理,多方联系,理出头绪,要下决心独立完成作业;
7、像历史、地理、生物、政治这些需要背的科目,要先背再做。
五、课后复习。
1、及时复习;
2、计划复习;
3、课本、笔记和教辅资料一起运用;
4、提高复习质量。
数学学习计划7
学习教材:高等数学上、下册(同济大学数学系编,第六版),线性代数(同济大学数学系编,第五版),概率论与数理统计(浙江大学盛骤编,第四版)
学习时间:3月份-6月份
学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容
学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。
学习计划:
一、3月24号上午9:00----11:00
不定积分
1.原函数、不定积分的概念;
2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;
3.会求有理函数和简单无理函数的积分.
定积分
1.定积分的概念和性质,定积分中值定理;
2.定积分的换元积分法与分部积分法;
3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;
4.反常积分的概念与计算;
5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.
:本章的基础课后习题
二、3月31号上午9:00----11:00
微分方程
1.微分方程及其阶、解、通解、初始条件和特解等概念;
2.变量可分离的微分方程及一阶线性微分方程的解法;
3.齐次微分方程的解法;
4.线性微分方程解的性质及解的结构;
5.二阶常系数齐次线性微分方程的解法;
6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.
作业:本章的基础课后习题
三、4月7号上午9:00----11:00
来总部阶段测评
四、4月14号上午9:00----11:00
多元函数微分学
1.二元函数的'概念与几何意义;
2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;
3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;
4.多元复合函数一阶、二阶偏导数的求法;
5.隐函数存在定理,计算多元隐函数的偏导数;
6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.
作业:本章的基础课后习题
五、4月21号上午9:00----11:00
重积分
1.二重积分的概念和性质,二重积分的中值定理;
2.会利用直角坐标、极坐标计算二重积分.
级数
1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;
2.几何级数与级数的收敛与发散的条件;
3.正项级数收敛性的比较判别法和比值判别法;
4.交错级数和莱布尼茨判别法;
5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;
6.函数项级数的收敛域及和函数的概念;
7.幂级数的收敛半径、收敛区间及收敛域的求法;
8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;
9.函数展开为泰勒级数的充分必要条件;
10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.
作业:本章的基础课后习题
六、4月28号上午9:00----11:00
行列式
1.行列式的概念和性质,行列式按行(列)展开定理.
2.用行列式的性质和行列式按行(列)展开定理计算行列式.
3.用克莱姆法则解齐次线性方程组.
作业:本章的基础课后习题
对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式
七、5月5号上午9:00----11:00
矩阵
1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.
2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.
3.方阵的幂与方阵乘积的行列式的性质.
4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.
5.伴随矩阵的概念,用伴随矩阵求逆矩阵.
6.分块矩阵及其运算
作业:本章的基础课后习题
八、5月12号上午9:00----11:00
总部考试
九、5月19号上午9:00----11:00
向量与线性方程组
1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.
2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.
3.非齐次线性方程组解的结构及通解.
4.用初等行变换求解线性方程组的方法.
5.维向量、向量的线性组合与线性表示的概念
6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.
7.向量组的极大线性无关组和向量组的秩的概念和求解.
8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.
作业:本章的基础课后习题
十、5月26号上午9:00----11:00
矩阵的特征值和特征向量
1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.
2.规范正交基、正交矩阵的概念以及它们的性质.
3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.
4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.
5.实对称矩阵的特征值和特征向量的性质.
作业:本章的基础课后习题
二次型
1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.
2.正交变换化二次型为标准形,配方法化二次型为标准形.
3.正定二次型、正定矩阵的概念和判别法.
作业:本章的基础课后习题
十一、6月2号上午9:00----11:00
考试
十二、6月9号上午9:00----11:00
随机事件和概率
1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.
2.概率、条件概率的概念,概率的基本性质.
3.会计算古典型概率和几何型概率.
4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.
5.事件独立性的概念与计算.
作业:本章的基础课后习题
随机变量及其分布
1.随机变量的概念,分布函数的概念及性质.
2.独立重复试验的概念与有关事件概率的计算.
3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.
4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.
5.随机变量函数的分布.
作业:本章的基础课后习题
十三、6月16号上午9:00----11:00
多维随机变量及分布
1.多维随机变量的概念,多维随机变量的分布的概念和性质.
2.二维离散型随机变量的概率分布、边缘分布和条件分布.
3.二维连续型随机变量的概率密度、边缘密度和条件密度.
4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.
5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.
6.两个随机变量简单函数的分
作业:本章的基础课后习题
十四、6月23号上午9:00----11:00
考试
十五、6月30号上午9:00----11:00
随机变量的数字特征
1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.
2.会运用数字特征的基本性质,并掌握常用分布的数字特征.
3.随机变量函数的数学期望.
4.切比雪夫不等式.
作业:本章的基础课后习题
大数定律和中心极限定理
1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
作业:本章的基础课后习题
样本及抽样分布
1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.
2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.
3.正态总体的常用抽样分布.
作业:本章的基础课后习题
矩估计和最大似然估计
1.参数的点估计、估计量与估计值的概念.
2.矩估计法(一阶矩、二阶矩)和最大似然估计法.
作业:本章的基础课后习题
7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。
7月底到8月中旬:暑假强化班
学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。
数学学习计划8
初中数学听课小技巧:
1、课前预习,能够有效提高课堂效率。
2、课堂上积极与老师互动,无论是回答问题,还是眼神交流,都能有效缓解注意力不集中。
3、课堂笔记永远要比大脑的记忆力强,所以必须要记好课堂笔记,课上记不完,课下要整理。
4、提问、质疑、辩论这些行为不会引起老师的反感,大部分老师都喜欢这类学生。
5、只有课上跟着老师的.思路走,才能更高效的接收新知识。
数学学习计划9
期末考完之后能做什么?这是每个学生和家长都想问的问题。每次大考,总是会给学生带来很大的触动,很多人开始懂得了要好好学习,很多人通过考试发现了自己的不足,大多数人只有在这个时候才显得认识很“深刻”。而寒假恰好是一个查漏补缺的最佳时机。高三上半学期结束之后,多数学校高中阶段的数学知识就已经全部学完,并且进行了第一轮的复习,有的学校甚至开始第二轮复习。
那么,在高中的最后一个寒假,高考生应如何做好数学这一重要科目的复习呢?
对于今年高考数学科目的难易程度,整套考卷的难易比例分配不会有变化,还是7:2:1,但今年的整体难度可能会比往年大一点儿,因为去年和前年的高考题相对比较简单。20xx年高考试题的难度总体上不会有大的变化,高考试题的策划和设计上同样不会有较大的变化,将继续体现大纲卷向课改卷的平稳过渡。
高三学生的寒假时间虽然比较短,但是同样要制订好学习计划,而且最好针对每一科都有详细的计划。
就数学这一科来说,查漏补缺是最为重要的,寒假的数学复习,要针对每位学生的实际,全面落实考点,构建知识网络,掌握高考数学的知识体系,对没学好的章节内容各个击破,补全补牢不透彻的知识点;再就是学习好各种解题技能技巧,拓展解题思路,理清数学方法在解题中的应用。
复习以往的错题也是寒假数学复习的重要方法。
抽出一点时间,将平时各类大大小小考试的卷子都拿出来,把错误的题目再订正一遍,最好把错题分类整理在一个错题本上。有些同学会觉得麻烦,实际上,当你一道错题整理出来后,你会发现比你匆忙地去做10道题效果更好。高三学生一定要珍惜“错误”,弄清错误的原因。因为只有牢固掌握基础知识、基本方法,才能获得数学学习的通解和通法。而在明确解题思路的错误后,才能真正巩固所学的知识。
高考数学科目中,占比最大的仍然是基础知识。包括优秀学生在内的任何一个学生,其复习质量高低的关键都在于是否切实抓好基础。函数、不等式、数列、三角、立体几何中的空间线面关系、解析几何中的曲线与方程是高中数学的主干知识,也是高考的重点,这些地方有明显漏洞必须首先弥补。抓基础不是把书上的结论看一遍,高三复习仍要强调理解知识的来源及其所蕴含的.数学思想、数学方法,把握知识的横纵联系,在理解的基础上实现网络化并牢固熟练地记忆。抓基础离不开做题,要通过解题的思考过程(解题中模糊想法的澄清,不同想法的比较分析)并结合解题研读课本,深入理解基础知识。
做题是很多学生喜欢的复习方法,但是此时不应再盲目做题,需要重质而不是重量。
高考数学考试的一个特点是研究题目就可以获得解题的方法,所以不建议高三学生在寒假期间再做模拟题,而应该在寒假期间对最近几年的真题进行分析研究,总结出一些解题的方法。对于平时数学成绩较好的学生来说,学会总结学习的思维,做到快速解题,把所有的题目固定成一种思维,同时总结出变型的主要原则。对于平时数学成绩不太理想的学生来说,这个时候还是应以课本知识点理解为主,在做历年的真题时,结合课本看哪些方面是没有掌握的,根据题目把课本上涉及的知识点标出来。看看这些知识点在应用的时候有何先决条件,知识点如何反向应用,具体的解题过程中在何处卡壳。
希望高三的学生在计划中订立短期目标与长期目标,短期目标就是每天熟记5至10个常用公式,做5道例题,一套综合卷子等;长期目标则是双基考试、一模考试、二模考试、高考中能取得什么样的进步。
数学学习计划10
1学习阶梯划分
一阶基础全面复习(3月~6月)
二阶强化熟悉题型(7月~10月)
三阶模考查缺补漏(11月~12月15日)
四阶点睛保持状态(12月16日~考试前)
2参考书目
必备参考资料:
数学考试大纲
《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。
《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的学生。《线性代数》清华版:适合基础比较的学生
《概率论与数理统计初步》浙大版:基本的题型课后习题都有覆盖。
历年真题
3复习计划
1、一阶基础,全面复习(3月~6月)
学习目标:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的三基——基本概念、基本理论、基本方法要系统理解和掌握。完成从大学学习到考研备战的基础准备。
复习建议:这一阶段主要的焦点要集中精力把教材好好地梳理,要至始至终不留死角和空白,按大纲要求结合教材对应章节全面复习,另外按章节顺序完成教材及相应的配套练习题,通过练习检验你是否真正地把教材的内容掌握了。由于教材的编写是环环相扣,易难递进的,所以建议每天学习新内容前要复习前面的内容,按照规律来复习,经过必要的重复会起到事半功倍的效果。也就是重视基础,长期积累;基础阶段重视纵向学习,夯实知识点。
2、二阶强化熟悉题型(7月~10月)
本阶段是考研复习的重点,对成败起决定性作用。大体可以分两轮学习。
第一轮暑期强化:7~8月
学习目标:熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧
复习建议:参加考研教育网强化班学习,根据老师辅导讲义认真研读,做到举一反三。这一时期大课老师所教学的例题都是经过严格筛选、归纳,可以说会更准确、更有针对性。在学习过程中对重点、难点一定做笔记,便于下一轮复习。
第二轮秋季强化:9~10月
学习目标:通过真题讲解和训练,进一步提高解题能力和技巧,达到实际考试的要求
复习建议:根据老师课堂所讲真题课后进行专项复习,对考试重点题型和自己薄弱的内容进行攻坚复习,达到全面掌握,不留空白和软肋,让训练达到或稍微超过真题难度。
3、三阶模考查缺补漏(11月~12月15日)
学习目标:这一阶段的目标是保住自己在前两个阶段的成果。1、通过对以往学习笔记的复习全面掌握考试要求; 2、进行高强度(高于考试强度)的冲刺题训练,进入考试状态,达到考试要求。
复习建议:建议考生要做到:1、通过做题进行总结和梳理(做题训练应当重点放在按考试要求的套题);2、复习教材和笔记进行必要的记忆,对基本概念、基本公式、基本定理进行记忆,尤其是平时不常用的、记忆模糊的公式,经常出错的要重点记忆;3、开始进行模拟试题或者真题的'实战演练,在这个过程中,注意答卷时间的分配,重视考场心态的调整。
4、第四阶点睛保持状态(12月15日~考试前)
学习目标:考前重点题型,应考技巧训练,保持状态
复习建议:多看之前做过的真题,并将自己整理的笔记或总结的重点习题再仔细看看,更佳提高针对性,加深记忆。在此基础上,按照考试时间去做一些强度不太大的模拟题或是真题,保持手感,以免到了考场思路断电、手生。同时还要调整心态,积极备考,以良好的状态到考场。
4建议学习时间
每年硕士研究生入学数学考试的时间一般都安排在上午,故建议考生们将数学的复习时间安排在每天早上9:00~12:00(可根据自身情况适当调整,但此时效果最好)。每天至少应安排花2.5-3个小时来复习数学,其中基础阶段要用1.5-2个小时左右的时间理解掌握概念、定义等,用1个小时左右来做习题巩固。对于数学基础较差的同学建议每天再加1个小时的复习时间用来做习题并总结。
数学学习计划11
初二数学学习计划表
第一课时:分式
1、理解分式的概念,懂得如何判断哪些是分式?哪些是整式?
2、掌握分式应满足什么条件?
3、掌握分式的基本性质及简单的约分、通分
第二课时:分式的运算
1、掌握分式的乘除法运算法则
2、会进行简单的乘除法分式运算
3、掌握分式的加减法运算法则
4、会根据分式相关法则进行运算
第三课时:整式指数幂
1、掌握基本的整式指数幂的性质
2、会根据性质进行运算
3、会利用性质解决实际应用
第四课时:分式方程
1、理解分式方程的概念
2、掌握化为一元一次方程的分式方程的解法。
3、学会如何检验方程及分式方程的运用
第五课时:复习第十六章所学内容,通过题目掌握分式的基本性质及其相关的'运算.
第六课时:反比例函数
1、理解反比例函数的意义
2、学习反比例函数的概念
3、掌握反比例函数图象的画法及其性质
第七课时:实际问题与反比例函数
1、会运用反比例函数解决实际问题
第八课时:复习第十七章所学内容,掌握反比例函数图像、性质;
第九课时:勾股定理
1、探索直角三角形的三边关系
2、学习勾股定理
3、会利用勾股定理进行简单的运算
1、学会利用三边关系判断一个三角形是否为直角三角形
2、会利用勾股定理进行简单的应用
第十一课时:复习第十八章所学内容,掌握勾股定理及其逆定理
第十二课时:平行四边形
1、掌握平行四边形的定义和性质
2、会对平行四边形进行判定
第十三课时:特殊的平行四边形
1、掌握特殊平行四边形的性质
2、会对特殊平行四边形进行判定
第十四课时:平行四边形的应用
1、掌握简单平行四边形的应用
2、掌握简单的特殊平行四边形的应用
第十五课时:梯形
1、掌握梯形的判定和性质
2、掌握等腰梯形的判定、性质和简单应用
第十六课时:复习第十九章所学内容,掌握平行四边形、特殊四边形及梯形、等腰梯形性质与判定
第十七课时:数据描述
1、理解平均数、中位数和众数所表达的含义
2、会求平均数、中位数与方差
3、区别算术平均数与加权平均数之间的联系和区别
第十八课时:全面进行总复习,通过题目的练习和讲解,掌握初二下册基本内容。
数学学习计划12
作为一名铁路二中新初一的学生来说,我对这所学校赋予了满满的热情与高昂的斗志。初中并不等同于小学,这是我人生的第一个转折点,我力求把它渲染到最完美的顶峰。
而对于我来说,中学的生活将由此展开,初一便是至关重要。古人云:“少壮不努力,老大徒伤悲。”这“壮”指的就是我将要迎接的初一生活,而“悲”也就预示着不努力的结果。所以,为了使“悲”与我划清界限,我定将全力以赴,用最饱满的热情迎接挑战!
但是,怎样做才能做到完美呢?在此,我要对我的数学规划作出明确判断。
1、确定目标
新初一开始,我要为自己顶下一个目标,继而顺着目标奋斗。
2、知识学习。
我认为,盲目的学习不仅没有好处,还会浪费宝贵的时间,所以,把重点放在课本上是一个非常明智的选择。“牵一发而动全身”,做到由一个知识点可以拎起一串,提起一面。系统地掌握知识后,技巧也就“水到渠成。
3、制定计划
作战讲究“知己知彼,百战不殆”。学习也是一样。所以要制定出符合自己实际情况的学习计划,必须要“知己”。“知己”包括三层含义:明确学习奋斗的目标,了解自己的学习情况,明确地估计自己的能力。之后便是制定学习计划。不用太复杂,不用想着每天做多少题,题海战术并不适合每一个人,而抓住重点题型,抓住历年来的频频出现在考试中的题型,将是最好的计划。
4、学习要求
(1)。做到上课认真听讲,认真记笔记,把老师讲的所有重点都要烂熟于心。若是课上有没听懂的,课下一定要找老师或者同学补上。“冰冻三尺非一日之寒。”若每一天的知识点都做到必会,那么离成果以又进了一步。
(2)。跟着老师的思路走。老师的重点,往往就是所有考试最爱考的题目,若能把这些东西做到了如指掌,则可以稳中求胜。
(3)。坚持。“坚持”是计划实施过程中最难的。由于缺乏毅力与恒心,很易虎头蛇尾。而学习是一个周期比较长的过程,今天的努力,并不能在明天就得到回报。它是量的`积累引起质的飞跃。半途而废,最浪费时间与精力,并对人的自信心有很大的动摇。
所以,我要求自己时刻不能心焦,更不能气馁、不能轻言放弃。
我要坚持,因为我相信坚持一定能产生奇迹!
为了能使我的初中又一个完美的结局,我定将按照以上的计划去要求自己。我相信,用我的热情、毅力、恒心,我定会稳中求胜,步步为营!
初中,请让我用手中的画笔,为你渲染出灿烂的光辉!
数学学习计划13
关键是提高听课的效率
1、课前预习能提高听课的针对性
预习中发现的难点是本次讲座的重点;为了减少听讲座的困难,我们可以弥补在预习中没有掌握好的旧知识。
它有助于提高思维能力。预习之后,你可以比较和分析你所理解的与老师的解释,以提高你的思维水平。预习还可以培养自己的自学能力。第二是专心听讲。
2、特别注意讲课的开头和结尾
在讲座开始时,一般是总结上节课的要点,指出这节课要教的内容,这是一个连接新旧知识的纽带。最后,它往往是对课堂所学知识的总结,具有高度的概括性,是在理解的基础上掌握这一部分知识的方法的提纲。
此外,老师经常在课堂上对一些重点和难点做一些语言、语调,甚至一些动作。
抓好基础
数学练习只不过是数学概念和数学思想的结合应用。明确数学的基本概念、定理和方法,是判断问题类型和知识范围的前提,是正确掌握解题方法的基础。
只有概念清楚,方法全面,遇到问题时,能快速得到解决问题的方法,或者面对新的练习时,能想到我们平时做的练习方法,才能快速解决。
弄清基本定理是正确的,快速解决习题的'前提条件,非凡是在复习什么章节的立体中,对基本定理熟悉而灵活掌握就能使习题解清楚,逻辑推理严密。反之,能使解题速度慢、逻辑混乱、叙述不清楚。
制定好计划
复习数学,想好的计划,不仅有大计划这一项,还一个小程序,以每月、每周、每日计划匹配老师的复习计划,而不是彼此冲突,如根据老师的复习计划,今天复习的知识分,今天内应该掌握的知识,加深对知识的理解,测试不同方面和不同角度研究知识。
在每天的复习计划中,我们应该留出一些时间去看课本和笔记,复习过去的知识点,思考老师那天说了什么,总结当天所学的知识。
可以说,日常锻炼可以少做一些,但这些归纳、反思、复习是必不可少的。我希望你在制定计划时谨慎些。
数学学习计划14
复习内容:
1、掌握数的顺序和大小,掌握9以内各数的组成。
2、初步知道加、减法的含义和加减法算式中各部分部分名称,初步知道加法和减法的关系,比较熟练地计算一位数的加法和9以内的减法。
3、初步学会根据加、减法的含义和算法解决一些简单的实际问题。
4、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。
5、初步了解分类的方法,会进行简单的分类。
6、认真作业、书写整洁的良好习惯。
7、通过实践活动体验数学与日常生活的密切联系。
复习目标:
1、理解加、减法的含义,进一步理解和掌握9以内的加、减法,能正确、熟练地口算相关的式题,形成相应的计算技能。
2、在具体的活动中,进一步认识长方体、正方体、圆柱和球,认识上下、前后、左右等方位,能应用分一分、排一排、数一数等方法收集和整理一些简单的数据,培养初步的空间观念和统计观念。
3、在应用所学知识解决简单实际问题的过程中,进一步发展分析问题、解决问题的能力,体会数学在日常生活中的广泛应用,培养初步的数学应用意识。
复习措施:
1、复习前,充分了解学生的学习情况,弄清学生对哪些知识掌握的比较好,哪些知识还存在问题,存在什么问题,从而有计划、有针对性地开展复习活动,以增强复习的实效性。
2、复习加减法计算时,可以采用游戏、竞赛等多种形式组织学生练习,以激发学生练习的兴趣,提高计算的正确率和熟练程度,促进计算技能的形成。
3、扎扎实实打好基础知识和基本技能,同时重视培养学生创新意识和学习数学的兴趣。
4、把握好知识的重点、难点以及知识间的内在联系,使学生都在原来的基础上有所提高。
5、把上半学期所学知识分块归类复习,针对单元测试卷、练习册、作业中容易出错的题作重点的渗透复习、设计专题活动,渗透各项数学知识。专题活动的设计可以使复习的.内容综合化,给学生比较全面地运用所学知识的机会。
6、根据平时教学了解的情况,结合复习有关的知识点做好有困难学生的辅导工作。
具体安排:
1、数的组成,物体的位置与顺序。(2课时)掌握数的顺序及组成;能确定物体前后、左右、上下的位置与顺序。
2、立体图形与平面图形(1课时)进一步认识长方体、立方体、圆柱体、球和长方形、正方形、三角形、圆。
3、分类(1课时)掌握分类的方法。
4、9以内加减法计算(3课时)通过对算式的计算与分类,整理加减计算方法,提高计算的正确率。激发学生积极思考问题,在复习中感知数学思考的有序性和条理性。
5、图文题(2课时)从量的意义上揭示部分和整体的关系,使学生进一步认识加、减法的关系。提高学生理解图意的能力,能根据图分析简单的数量关系,渗透图中所反映的事物概念之间的种属关系。
数学学习计划15
如果说刚上初一大家起点是一样的,那么,经过一年的学习,初二阶段就是成绩的分水岭,同时,初二阶段也是承上启下的关键阶段,初二所学的数学知识,基本上占据了整个初中数学的一般,因此,学好初二数学十分关键,初二数学学习需要注意以下几个方面:
第一,初二数学需要同学们透彻理解所学知识点、提升学习效率,如果初一没有养成课前预习、课上学习和课后补漏的学习习惯,那么,一定要在初二养成,否则,到了初三学习节奏更加紧凑,会产生厌学的心理。
第二,随着知识难度的.提升,初二数学更需要掌握恰当的解题方法,这就要求在平时的学习中要勤于归纳总结,发现数学规律。尤其是针对错题,一定要重新认真思考,理清思路
第三,随着数学知识的引入和不断深化,让很多同学都很难适应,这也导致了初二数学成绩开始两极分化,而且个人成绩容易波动很大,这就需要同学们保持平和的心态,不要以一时的成绩好坏来给自己定位。